Letters in Mathematical Physics

, Volume 39, Issue 3, pp 269–275 | Cite as

The Hyperbolic Volume of Knots from the Quantum Dilogarithm

  • R. M. KASHAEV
Article

Abstract

The invariant of a link in three-sphere, associated with the cyclic quantum dilogarithm, depends on a natural number N. By the analysis of particularexamples, it is argued that, for a hyperbolic knot (link), the absolute valueof this invariant grows exponentially at large N, the hyperbolic volume of the knot (link) complement being the growth rate.

knot theory hyperbolic 3-manifolds topological quantum field theory. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, J. W.: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30(1928), 275–306.Google Scholar
  2. 2.
    Jones, V. F. R.: A polynomial invariant for knots and links via Von Neumann algebras, Bull. Amer. Math. Soc. 12(1985), 103–111.Google Scholar
  3. 3.
    Yang, C. N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19(1967), 1312–1314.Google Scholar
  4. 4.
    Baxter, R. J.: Partition function of the eight-vertex lattice model, Ann. Phys. 70(1972), 193–228Google Scholar
  5. 5.
    Thurston, W.: The geometry and topology of hyperbolic 3-manifolds, Lecture notes, Princeton University, Princeton 1977/78.Google Scholar
  6. 6.
    Adams, C., Hildebrand, M. and Weeks, J.: Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc. 1(1991), 1–56.Google Scholar
  7. 7.
    Adams, C.: The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York, 1994.Google Scholar
  8. 8.
    Witten, E.: Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121(1989), 351–399.Google Scholar
  9. 9.
    Atiyah, M.: Topological quantum field theories, Publ. Math. IHES 68(1989), 175–186.Google Scholar
  10. 10.
    Witten, E.: 2 + 1-dimensional gravity as an exactly soluble system, Nuclear Phys. B. 311(1988/89), 46–78.Google Scholar
  11. 11.
    Milnor, J. W.: Hyperbolic geometry: the first 150 year, Bull. Amer. Math. Soc. 6(1) (1982), 232–248.Google Scholar
  12. 12.
    Faddeev, L. D. and Kashaev, R. M.: Quantum dilogarithm, Modern Phys. Lett. A 9(1994), 427.Google Scholar
  13. 13.
    Faddeev, L.D.: Discrete Heisenberg–Weyl group and modular group, Lett.Math. Phys. 34(1995), 249–254.Google Scholar
  14. 14.
    Faddeev, L. D.: Current-like variables in massive and massless integrable models, Lectures delivered at the International School of Physics ‘Enrico Fermi’, held in Villa Monastero, Varenna, Italy, 1994, hep-th/9408041Google Scholar
  15. 15.
    Kashaev, R. M.:Quantum dilogarithmas a 6j-symbol,Modern Phys. Lett. A 9(1994), 3757–3768.Google Scholar
  16. 16.
    Kashaev, R. M.: A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10(1995), 1409–1418.Google Scholar
  17. 17.
    Bazhanov, V. V. and Reshetikhin, N. Yu.: Remarks on the quantum dilogarithm, J. Phys. A,Math. Gen. 28(1995), 2217–2226.Google Scholar
  18. 18.
    Bazhanov, V. V. and Baxter, R. J.: Star-triangle relation for a three-dimensional model, J. Statist. Phys. 71(1993), 839.Google Scholar
  19. 19.
    Kashaev, R. M., Mangazeev, V. V. and Stroganov, Yu. G.: Star-square and tetrahedron equations in the Baxter-Bazhanov model, Internat. J. Modern Phys. A 8(1993), 1399.Google Scholar
  20. 20.
    Turaev, V. G. and Viro, O. Y.: State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31(1992), 865–902.Google Scholar
  21. 21.
    Kirillov, A. N.: Dilogarithm identities, 1994, hep-th/9408113.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • R. M. KASHAEV
    • 1
  1. 1.Laboratoire de Physique Thé ENSLAPP**ENSLyonLyonFrance

Personalised recommendations