Environmental Biology of Fishes

, Volume 49, Issue 2, pp 259–264 | Cite as

Critical thermal maxima of diploid and triploid brook charr, Salvelinus fontinalis

  • Tillmann J. Benfey
  • Lisa E. McCabe
  • Pierre Pepin


The purpose of this experiment was to determine whether diploid and triploid brook charr, Salvelinus fontinalis, differ in their critical thermal maxima (CTM). Two age classes were tested (underyearlings, having average weight of 25 g, and yearlings, having average weight of 668 g) at two rates of temperature increase (2° C h-1 and 15° C h-1). No effect of ploidy on CTM was found. Fish exposed to the faster rate of temperature increase had higher CTM values than those exposed to the slower rate (underyearlings: 29.5 ± 0.1° C versus 29.1 ± 0.1° C in one trial and 29.8 ± 0.1° C versus 28.3 ± 0.1° C in a second trial; yearlings: 29.3 ± 0.1° C versus 27.7 ± 0.1° C in two trials, p < 0.001 in all cases). Underyearlings had higher CTM values than yearlings (29.2 ± 0.1° C versus 28.5 ± 0.1° C, p < 0.05). Female yearlings, which were immature, had higher CTM values than males, which had previously matured as one-year-olds (28.8 ± 0.1° C versus 28.3 ± 0.1° C, p < 0.001).

triploidy thermal tolerance lethal limits brook trout fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Aliah, R.S., Y. Inada, K. Yamaoka & N. Taniguchi. 1991. Effects of triploidy on hematological characteristics and oxygen consumption of ayu. Nippon Suisan Gakkaishi 57: 833–836.Google Scholar
  2. Aliah, R.S., K. Yamaoka, Y. Inada & N. Taniguchi. 1990. Effects of triploidy on tissue structure of some organs of ayu. Nippon Suisan Gakkaishi 56: 569–575.Google Scholar
  3. Allendorf, F.W. & R.F. Leary. 1984. Heterozygosity in gynogenetic diploids and triploids estimated by gene-centromere recombination rates. Aquaculture 43: 413–420.Google Scholar
  4. Baker, C.D., W.H. Neill Jr & K. Strawn. 1970. Sexual difference in heat resistance of the Ozark minnow, Dionda nubila (Forbes). Trans. Amer. Fish. Soc. 99: 588–591.Google Scholar
  5. Barker, C.J., M.L. Beck & C.J. Biggers. 1983. Hematologic and enzymatic analysis of Ctenopharyngodon idella × Hypophthalmichthys nobilis F1 hybrids. Comp. Biochem. Physiol. 74A: 915–918.Google Scholar
  6. Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245–256.Google Scholar
  7. Benfey, T.J. 1996. Use of all-female and triploid salmonids for aquaculture in Canada. Bull. Aquacul. Assoc. Can. 96–2: 6–8.Google Scholar
  8. Benfey, T.J. 1997. The physiology and behavior of triploid fishes. Rev. Fish. Sci. (in press).Google Scholar
  9. Benfey, T.J. & A.M. Sutterlin. 1984. The haematology of triploid landlocked Atlantic salmon, Salmo salar L. J. Fish Biol. 24: 333–338.Google Scholar
  10. Biron, M. & T.J. Benfey. 1994. Cortisol, glucose and hematocrit changes during acute stress, cohort sampling, and the diel cycle in diploid and triploid brook trout (Salvelinus fontinalis Mitchill). Fish Physiol. Biochem. 13: 153–160.Google Scholar
  11. Blanc, J.-M., H. Poisson & F. Vallée. 1992. Survival, growth and sexual maturation of the triploid hybrid between rainbow trout and Arctic char. Aquat. Liv. Res. 5: 15–21.Google Scholar
  12. Coutant, C.C. 1987. Thermal preference: when does an asset become a liability? Env. Biol. Fish. 18: 161–172.Google Scholar
  13. Elliott, J.M. 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwater Biol. 25: 61–70.Google Scholar
  14. Elliott, J.M. & J.A. Elliott. 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. J. Fish Biol. 47: 917–919.Google Scholar
  15. Ferguson, R.G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Board Can. 15: 607–624.Google Scholar
  16. Gibson, M.B. 1954. Upper lethal temperature relations of the guppy, Lebistes reticulatus. Can. J. Zool. 32: 393–407.Google Scholar
  17. Graham, M.S., G.L. Fletcher & T.J. Benfey. 1985. Effect of triploidy on blood oxygen content of Atlantic salmon. Aquaculture 50: 133–139.Google Scholar
  18. Jobling, M. 1981. Temperature tolerance and the final preferendum — rapid methods for the assessment of optimum growth temperatures. J. Fish Biol. 19: 439–455.Google Scholar
  19. Keenleyside, M.H.A. 1962. Skin-diving observations of Atlantic salmon and brook trout in the Miramichi River, New Brunswick. J. Fish. Res. Board Can. 19: 625–634.Google Scholar
  20. Kilgour, D.M. & R.W. McCauley. 1986. Reconciling the two methods of measuring upper lethal temperature in fishes. Env. Biol. Fish. 17: 281–290.Google Scholar
  21. Leary, R.F., F.W. Allendorf, K.L. Knudsen & G.H. Thorgaard. 1985. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54: 219–225.Google Scholar
  22. McCauley, R.W. 1977. Laboratory methods for determining temperature preference. J. Fish. Res. Board Can. 34: 749–752.Google Scholar
  23. McCauley, R.W. & N.W. Huggins. 1979. Ontogenetic and nonthermal seasonal effects on thermal preferenda of fish. Amer. Zool. 19: 267–271.Google Scholar
  24. Myers, J.M. & W.K. Hershberger. 1991. Early growth and survival of heat-shocked and tetraploid-derived triploid rainbow trout (Oncorhynchus mykiss). Aquaculture 96: 97–107.Google Scholar
  25. Ojolick, E.J., R. Cusack, T.J. Benfey & S.R. Kerr. 1995. Survival and growth of all-female diploid and triploid rainbow trout (Oncorhynchus mykiss) reared at chronic high temperature. Aquaculture 131: 177–187.Google Scholar
  26. Paladino, F.V., J.R. Spotila, J.P. Schubauer & K.T. Kowalski. 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Can. Biol. 39: 115–122.Google Scholar
  27. Parsons, G.R. 1993. Comparisons of triploid and diploid white crappies. Trans. Amer. Fish. Soc. 122: 237–243.Google Scholar
  28. Pepper, V.A. (ed.) 1991. Proceedings of the Atlantic Canada workshop on methods for the production of non-maturing salmonids: 19–21 February 1991, Dartmouth, Nova Scotia. Can. Tech. Rep. Fish. Aquat. Sci. 1789: 1–152.Google Scholar
  29. Power, G. 1980. The brook charr, Salvelinus fontinalis. pp. 141–203. In: E.K. Balon (ed.) Charrs, Salmonid Fishes of the Genus Salvelinus, Dr W. Junk Publishers, The Hague.Google Scholar
  30. Quillet, E., B. Chevassus & F. Krieg. 1987. Characterization of auto-and allotriploid salmonids for rearing in seawater cages. pp. 239–252. In: K. Tiews (ed.) Selection, Hybridization, and Genetic Engineering in Aquaculture, Vol. 2, Heenemann Verlags, Berlin.Google Scholar
  31. Quillet, E. & J.L. Gaignon. 1990. Thermal induction of gynogenesis and triploidy in Atlantic salmon (Salmo salar) and their potential interest for aquaculture. Aquaculture 89: 351–364.Google Scholar
  32. Reynolds, W.W. & M.E. Casterlin. 1978. Ontogenetic change in preferred temperature and diel activity of the yellow bullhead, Ictalurus natalis. Comp. Biochem. Physiol. 59A: 409–411.Google Scholar
  33. Sezaki, K., S. Watabe & K. Hashimoto. 1983. A comparison of chemical composition between diploids and triploids of ‘ginbuna’ Carassius auratus langsdorfi. Bull. Jap. Soc. Sci. Fish. 49: 97–101.Google Scholar
  34. Sezaki, K., S. Watabe, K. Tsukamoto & K. Hashimoto. 1991. Effects of increase in ploidy status on respiratory function of ginbuna, Carassius auratus langsdorfi (Cyprinidae). Comp. Biochem. Physiol. 99A: 123–127.Google Scholar
  35. Simon, D.C., C.G. Scalet & J.C. Dillon. 1993. Field performance of triploid and diploid rainbow trout in South Dakota ponds. North Amer. J. Fish. Manag. 13: 134–140.Google Scholar
  36. Small, S.A. & T.J. Benfey. 1987. Cell size in triploid salmon. J. Exp. Zool. 241: 339–342.Google Scholar
  37. Small, S.A. & D.J. Randall. 1989. Effects of triploidy on the swimming performance of coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 46: 243–245.Google Scholar
  38. Spaas, J.T. 1960. Contribution to the comparative physiology and genetics of the European Salmonidae. III. Temperature resistance at different ages. Hydrobiologia 15: 78–88.Google Scholar
  39. Swarup, H. 1959. Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L.). J. Genet. 56: 143–155.Google Scholar
  40. Ueno, K. 1984. Induction of triploid carp and their haematological characteristics. Japan. J. Genet. 59: 585–591.Google Scholar
  41. Yamamoto, A. & T. Iida. 1994. Hematological characteristics of triploid rainbow trout. Fish Pathol. 29: 239–243.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Tillmann J. Benfey
    • 1
  • Lisa E. McCabe
    • 1
  • Pierre Pepin
    • 2
  1. 1.Department of BiologyUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Fisheries and OceansSt. John'sCanada

Personalised recommendations