Machine Learning

, Volume 26, Issue 2–3, pp 99–146 | Cite as

Clausal Discovery

  • Luc De Raedt
  • Luc Dehaspe
Article

Abstract

The clausal discovery engine claudien is presented. CLAUDIEN is an inductive logic programming engine that fits in the descriptive data mining paradigm. CLAUDIEN addresses characteristic induction from interpretations, a task which is related to existing formalisations of induction in logic. In characteristic induction from interpretations, the regularities are represented by clausal theories, and the data using Herbrand interpretations. Because CLAUDIEN uses clausal logic to represent hypotheses, the regularities induced typically involve multiple relations or predicates. CLAUDIEN also employs a novel declarative bias mechanism to define the set of clauses that may appear in a hypothesis.

Inductive Logic Programming Knowledge Discovery in Databases Data Mining Learning Induction Semantics for Induction Logic of Induction Parallel Learning 

References

  1. Adé, H., De Raedt, L. and Bruynooghe, M. 1995. Declarative Bias for Specific-to-General ILP Systems. Machine Learning, 20(1/2): 119 - 154.Google Scholar
  2. Agrawal, R., Imielinski, T. and Swami, A. 1993. Mining association rules between sets of items in large databases. In Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), pages 207-216.Google Scholar
  3. Bergadano, F. & Gunetti, D. 1993. An interactive system to learn functional logic programs. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1044-1049. Morgan Kaufmann.Google Scholar
  4. Bergadano, F. 1993. Towards an inductive logic programming language. Technical Report ESPRIT project no. 6020 ILP Deliverable TO1, Computer Science Department, University of Torino.Google Scholar
  5. Bratko, I. & Grobelnik, M. 1993. Inductive learning applied to program construction and verification. In Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 279-292.Google Scholar
  6. Bratko, I. 1986. Prolog Programming for Artificial Intelligence. Addison-Wesley.Google Scholar
  7. Cameron-Jones, R.M. & Quinlan, J.R. 1993. Avoiding pitfalls when learning recursive theories. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1050-1055. Morgan Kaufmann.Google Scholar
  8. Clark, P. & Niblett, T. 1989. The CN2 algorithm. Machine Learning, 3(4): 261-284.Google Scholar
  9. Clocksin, W.F. & Mellish, C.S. 1981. Programming in Prolog. Springer-Verlag, Berlin.Google Scholar
  10. Cohen, W.W. 1994. Grammatically biased learning: learning logic programs using an explicit antecedent description language. Artificial Intelligence, 68: 303-366.Google Scholar
  11. De Raedt, L. & Bruynooghe, M. 1993. A theory of clausal discovery. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1058-1063. Morgan Kaufmann.Google Scholar
  12. De Raedt, L. & Džeroski, S. 1994. First order jk-clausal theories are PAC-learnable. Artificial Intelligence, 70: 375-392.Google Scholar
  13. De Raedt, L.& Van Laer, W. 1995. Inductive constraint logic. In Proceedings of the 5thWorkshop on Algorithmic Learning Theory, Volume 997 of Lecture Notes in Artificial Intelligence. Springer-Verlag.Google Scholar
  14. De Raedt, L., Lavrač, N. & Džeroski, S. 1993. Multiple predicate learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1037-1042. Morgan Kaufmann.Google Scholar
  15. De Raedt, L. 1996. Induction in logic. In R.S. Michalski and Wnek J., editors, Proceedings of the 3rd International Workshop on Multistrategy Learning, pages 29-38.Google Scholar
  16. Dehaspe, L. & De Raedt, L. 1996. DLAB: A declarative language bias formalism. In Proceedings of the International Symposium on Methodologies for Intelligent Systems (ISMIS96), volume 1079 of Lecture Notes in Artificial Intelligence, pages 613-622. Springer-Verlag.Google Scholar
  17. Dolšak, B.& Muggleton, S. 1992. The application of Inductive Logic Programming to finite element mesh design. In S. Muggleton, editor, Inductive logic programming, pages 453-472. Academic Press.Google Scholar
  18. Džeroski, S., Cestnik, B. & Petrovski, I. 1993. Using the m-estimate in rule induction. Journal of Computing and Information Technology, 1(1): 37 - 46.Google Scholar
  19. Džeroski, S., Dehaspe, L., Ruck, B. & Walley, W. 1994. Classification of river water quality data using machine learning. In Proceedings of the 5th International Conference on the Development and Application of Computer Techniques to Environmental Studies.Google Scholar
  20. Džeroski, S. 1995. Inductive logic programming and knowledge discovery in databases. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 118-152. The MIT Press.Google Scholar
  21. Emde, W., Habel, C.U. & Rollinger, C.R. 1983. The discovery of the equator or concept driven learning. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 455-458. Morgan Kaufmann.Google Scholar
  22. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. editors. 1995. Advances in Knowledge Discovery and Data Mining. The MIT Press.Google Scholar
  23. Fensel, D., Zickwolff, M. & Wiese, M. 1995. Are substitutions the better examples? In L. De Raedt, editor, Proceedings of the 5th International Workshop on Inductive Logic Programming.Google Scholar
  24. Flach, P. 1992. A framework for inductive logic programming. In S. Muggleton, editor, Inductive logic programming. Academic Press.Google Scholar
  25. Flach, P. 1993. Predicate invention in inductive data engineering. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, Volume 667 of Lecture Notes in Artificial Intelligence, pages 83-94. Springer-Verlag.Google Scholar
  26. Flach, P.R. 1994. Inductive logic programming and philosophy of science. In S. Wrobel, editor, Proceedings of the 4th InternationalWorkshop on Inductive Logic Programming, volume 237 of GMD-Studien, Sankt Augustin, Germany. Gesellschaft für Mathematik und Datenverarbeitung MBH.Google Scholar
  27. Flach, P. 1995. An inquiry concerning the logic of induction. PhD thesis, Tilburg University, Institute for Language Technology and Artificial Intelligence.Google Scholar
  28. Genesereth, M. & Nilsson, N. 1987. Logical foundations of artificial intelligence. Morgan Kaufmann.Google Scholar
  29. Helft, N. 1989. Induction as nonmonotonic inference. In Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning, pages 149-156. Morgan Kaufmann.Google Scholar
  30. Kantola, M., Mannila, H., Raiha, K.J. & Siirtola, H. 1992. Discovering functional and inclusion dependencies in relational databases. International Journal of Intelligent Systems, 7(7): 561-607.Google Scholar
  31. Kietz, J-U. & Wrobel, S. 1992. Controlling the complexity of learning in logic through syntactic and task-oriented models. In S. Muggleton, editor, Inductive logic programming, pages 335-359. Academic Press.Google Scholar
  32. Klösgen, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining. The MIT Press.Google Scholar
  33. Lavrač, N. & Džeroski, S. 1994. Inductive Logic Programming: Techniques and Applications. Ellis Horwood.Google Scholar
  34. Lloyd, J.W. 1987. Foundations of logic programming. Springer-Verlag, 2nd edition.Google Scholar
  35. MacDonald, I.G. 1979. Symmetric functions and Hall polynomials. Clarendon Oxford.Google Scholar
  36. Mannila, H. 1995. Aspects of data mining. In Y. Kodratoff, G. Nakhaeizadeh, and G. Taylor, editors, Proceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 1-6, Heraklion, Crete, Greece.Google Scholar
  37. Manthey, R. & Bry, F. 1988. SATCHMO: a theorem prover implemented in Prolog. In Proceedings of the 9th International Conference on Automated Deduction (CADE88), pages 415-434. Springer-Verlag.Google Scholar
  38. Michalski, R.S. 1983. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial intelligence approach, volume 1. Morgan Kaufmann.Google Scholar
  39. Mitchell, T.M. 1982. Generalization as search. Artificial Intelligence, 18: 203-226.Google Scholar
  40. Morik, K. & Brockhausen, P. 1996. A multistrategy approach to relational discovery in databases. In R.S. Michalski and Wnek J., editors, Proceedings of the 3rd International Workshop on Multistrategy Learning, pages 17-28.Google Scholar
  41. Muggleton, S. & De Raedt, L. 1994. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19,20: 629-679.Google Scholar
  42. Muggleton, S. & Feng, C. 1990. Efficient induction of logic programs. In Proceedings of the 1st conference on algorithmic learning theory, pages 368-381. Ohmsma, Tokyo, Japan.Google Scholar
  43. Muggleton, S. 1995. Inverse entailment and Progol. New Generation Computing, 13.Google Scholar
  44. Piatetsky-Shapiro, G. 1991. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229-248. The MIT Press.Google Scholar
  45. Plotkin, G. 1970. A note on inductive generalization. In Machine Intelligence, volume 5, pages 153-163. Edinburgh University Press.Google Scholar
  46. Quinlan, J.R. 1990. Learning logical definitions from relations. Machine Learning, 5: 239-266.Google Scholar
  47. Rouveirol, C. 1994. Flattening and saturation: Two representation changes for generalization. Machine Learning, 14: 219-232.Google Scholar
  48. Savnik, I. & Flach, P.A. 1993. Bottom-up induction of functional dependencies from relations. In Proceedings of the AAAI'93 Workshop on Knowledge Discovery in Databases, pages 174-185. AAAI Press. Washington DC.Google Scholar
  49. Schlimmer, J. 1991. Learning determinations and checking databases. In Proceedings of the AAAI'91 Workshop on Knowledge Discovery in Databases, pages 64-761. Washington DC.Google Scholar
  50. Shen, W.M. 1992. Discovering regularities from knowledge bases. International Journal of Intelligent Systems, 7(7).Google Scholar
  51. Srinivasan, A., Muggleton, S. & Bain, M. 1992. Distinguishing exceptions from noise in non-monotonic learning. In Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992.Google Scholar
  52. Srinivasan, A., Muggleton, S.H. & King, R.D. 1995. Comparing the use of background knowledge by inductive logic programming systems. In L. De Raedt, editor, Proceedings of the 5th International Workshop on Inductive Logic Programming. IOS Press.Google Scholar
  53. Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E. & King, R.D. 1995. Theories for mutagenicity: a study in first-order and feature-based induction. Artificial Intelligence. To appear.Google Scholar
  54. Sterling, L. & Shapiro, E. 1986. The art of Prolog. The MIT Press.Google Scholar
  55. van der Laag, P.R.J. & Nienhuys-Cheng, S.-H. 1994. Existence and nonexistence of complete refinement operators. In F. Bergadano and L. De Raedt, editors, Proceedings of the 7th European Conference on Machine Learning, volume 784 of Lecture Notes in Artificial Intelligence, pages 307-322. Springer-Verlag.Google Scholar
  56. Wrobel, S. & Džeroski, S. 1995. The ILP description learning problem: Towards a general model-level definition of data mining in ILP. Technical report, Presented at the 1995 Workshop of the GI Special Interest Group Machine Learning (FGML-95).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Luc De Raedt
    • 1
  • Luc Dehaspe
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations