European Journal of Epidemiology

, Volume 13, Issue 1, pp 67–72 | Cite as

The distribution and prevalence of B. burgdorferi genomospecies in Ixodes ricinus ticks in Ireland

  • F. Kirstein
  • S. Rijpkema
  • M. Molkenboer
  • J.S. Gray
Article

Abstract

Questing Ixodes ricinus ticks were collected from six locations throughout Ireland and 638 nymphs, 111 females and 118 males were investigated for infection with Borrelia burgdorferi sensu lato (s.l.). The total prevalence of B. burgdorferi s.l. in the ticks was determined as 14.9% by polymerase chain reaction (PCR) amplification of the spacer region of 5S-23S rRNA genes. Infection prevalence was significantly higher in adult (20.1%) Ixodes ricinus compared to nymphs (13.1%). The prevalence of infection in adult male and female ticks was similar (19.5% and 20.7% respectively). The genomospecies B. burgdorferi sensu stricto, B. afzelii, B. garinii and group VS116 were identified by reverse line blot (RLB) using genomospecies specific oligonucleotide probes. The most prevalent B. burgdorferi genomospecies identified were VS116 (34.6%), B. garinii (24.3%) and B. burgdorferi sensu stricto (18.4%). B. afzelii was uncommon (6.6%). Multiple infections were observed in 13.2% of the infected ticks. The distribution of the genomospecies showed geographical variation and also seemed to be influenced by the nature of the habitat. A broad range of genomospecies seemed to be associated with the presence of a wide spectrum of potential reservoir hosts in the habitat and also with a high overall prevalence of B. burgdorferi s.l.

Borrelia burgdorferi genomospecies Prevalence Ixodes ricinus ticks PCR Reverse line blot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davies JP. Lyme disease — a tick-borne spirochetosis? Science 1982; 216: 1317–1319.Google Scholar
  2. 2.
    Kahl O. Lyme Borreliosis — an ecological perspective of a tick-borne human disease. Anz. Sch dlingskde, Pflanzenschutz Umweltschutz 1991; 64: 45–55.Google Scholar
  3. 3.
    Postic D, Assous M, Grimont PAD, Baranton G. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol 1994; 44: 743–752.Google Scholar
  4. 4.
    Casjens S, Delange M, Ley III HL, Rosa P, Huang WM. Linear chromosomes of Lyme disease agent spirochetes: Genetic diversity and conservation of gene order. J Bacteriol 1995; 177: 2769–2780.Google Scholar
  5. 5.
    Marconi RT, Liveris D, Schwartz I. Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: Phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J Clin Microbiol 1995; 33: 2427–2434.Google Scholar
  6. 6.
    Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClelland M, Nakao, M. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bact 1995; 45: 804–810.Google Scholar
  7. 7.
    Anthonissen FM, Dekesel M, Hoet PP, Bigaignon GH. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol 1994; 145: 327–331.Google Scholar
  8. 8.
    Assous MV, Postic D, Paul G, Névot P, Baranton G. Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis 1993; 12: 261–268.Google Scholar
  9. 9.
    Canica MM, Nato F, du Merle L, Mazie JC, Baranton G, Postic D. Monoclonal antibodies for the identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 1993; 25: 441–448.Google Scholar
  10. 10.
    Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, De Jongh BM, Spanjaard L, Ramselaar ACP, Kramer MD, Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 1993; 17: 708–717.Google Scholar
  11. 11.
    Gray JS, Schönberg A, Postic D, Belfaiza J, Saint Girons I. First isolation and characterisation of Borrelia garinii, agent of Lyme borreliosis from Irish ticks. I J Med Sci 1995; 165: 24–26Google Scholar
  12. 12.
    Rijpkema S, Molkenboer M, Schouls L, Jongejan F, Schellekens J. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 1995; 33: 3091–3095.Google Scholar
  13. 13.
    Gray JS, Kahl O, Janetzki J, Stein J, Guy E. The spatial distribution of Borrelia burgdorferi infected Ixodes ricinus in the Connemara region of County Galway, Ireland. Exp Appl Acarol 1995; 19: 163–172.Google Scholar
  14. 14.
    Guy EC, Stanek G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol 1991; 44: 610–611.Google Scholar
  15. 15.
    Logistic procedures. In: Calis and Logistic Procedures, SAS Technical Report P-200, Release 604, 1991; 175–230.Google Scholar
  16. 16.
    Aeschlimann A, Chamot E, Gigon F, Jeanneret JP, Kesseler D, Walter C. Borrelia burgdorferi in Switzerland. Zentralbl Bakteriol Mikrobiol Hyg A 1986; 263: 450–458.Google Scholar
  17. 17.
    Stanek G, Pletschette M, Flamm H, Hirschl AM, Aberer E, Kristoferitsch W, Schmutzhard E. European Lyme borreliosis. Ann NY Acad Sci 1988; 539: 274–282.Google Scholar
  18. 18.
    Gray JS, Cutler S, Robertson J, O'Connell S. Lyme disease in the Republic of Ireland. WHO Workshop on Lyme Borreliosis Diagnosis and Surveillance. Warsaw, Poland, June 1995 (limited circulation), 6 pp.Google Scholar
  19. 19.
    Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, Assous M, Grimont PAD. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 1992; 42: 378–383.Google Scholar
  20. 20.
    Wilske BA, Preac-Mursic V, Göbel UB, Graf B, Jauris S, Soutschek E, Schwab E, Zumstein G. An OspA serotyping system for Borrelia burgdorferi based on the reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 1993; 31: 340–350.Google Scholar
  21. 21.
    Postic D, Baranton G. Molecular fingerprinting and phylogeny of Borrelia burgdorferi sensu lato. In: Yanaghari Y, Masuzawa T (eds), Present status of Lyme disease and the biology of Lyme borrelia. Proceedings of the International Symposium on Lyme Disease in Japan. Kanzanji, Hamamatsu, Shizuoka, Japan 1994: 133–147.Google Scholar
  22. 22.
    Rijpkema S, Golubic D, Molkenboer M, Verbeek-De Kruif N, Schellekens J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region in northern Croatia. Exp Appl Acarol 1995, 20: 23–30.Google Scholar
  23. 23.
    Demaerschalck I, Ben Massoud A, De Kesel M, Hoyois B, Lobet Y, Hoet P, Bigaignon G, Bollen A. Godfroid E. Simultaneous presence of different Borrelia burgdorferi sensu lato genospecies in biological fluids of Lyme disease patients. J Clin Microbiol 1995; 33: 602–608.Google Scholar
  24. 24.
    Rijpkema S, Tazelaar D, Molkenboer M, Noordhoek G, Plantinga G, Schouls L, Schellekens J. Detection by PCR of Borrelia burgdorferi sensu lato in skin biopsies of patients with cutaneous manifestations of Lyme borreliosis: Identification of four genomic groups. In: Diagnosis and transmission of Lyme borreliosis. University of Utrecht, the Netherlands 1995: 123–137.Google Scholar
  25. 25.
    Leuba-Garcia S, Kramer MD, Wallich R, Gern L. Characterization of Borrelia burgdorferi isolated from different organs of Ixodes ricinus of ticks collected in Nature. Int J Med Microbiol Virol Parasitol Infect Dis 1994; 280: 468–475.Google Scholar
  26. 26.
    Pichon B, Godfroid E, Hoyois B, Bollen A, Rodhain F, Perez-Eid C. Simultaneous infection of Ixodes ricinus nymphs by two Borrelia burgdorferi sensu lato species: Implications for clinical manifestations. Emerging Infect Dis 1995; 1: 89–90.Google Scholar
  27. 27.
    Khanakah G, Kmety E, Radda A, Stanek G. Micromammals as reservoir of Borrelia burgdorferi in Austria. VI Int Conf Lyme Borreliosis, Bologna, Italy, 1994; Abstract PO77W.Google Scholar
  28. 28.
    Nakao M, Miyamoto K. Mixed infection of different Borrelia species among Apodemus speciosus mice in Hokkaido, Japan. J Clin Microbiol 1995: 490–492.Google Scholar
  29. 29.
    Nakao M, Miyamota K, Fukunaga M. Lyme disease spirochetes in Japan: Enzootic transmission cycles in birds, rodents and Ixodes persulcatus ticks. J Inf Dis 1994; 170: 878–882.Google Scholar
  30. 30.
    Olsén B, Jaenson TGT, Noppa L, Bunikis J, Bergström S. A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature 1993; 362: 340–342.Google Scholar
  31. 31.
    Isogai E, Tanaka S, Braga IS, Itakura C, Isogai H, Kimura K, Fujii N. Experimental Borrelia garinii infection of Japanese quail. Infect Immun 1994; 62: 3580–3582.Google Scholar
  32. 32.
    Mejlon HA, Jaenson TGT. Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand J Inf Dis 1993; 25: 449–456.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • F. Kirstein
    • 1
  • S. Rijpkema
    • 2
  • M. Molkenboer
    • 2
  • J.S. Gray
    • 1
  1. 1.Environmental Resource ManagementUniversity College DublinDublin 4Ireland
  2. 2.Research Laboratory for Infectious DiseasesNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations