Letters in Mathematical Physics

, Volume 41, Issue 2, pp 101–117 | Cite as

Noncommutative Deformation Theory

  • Georges Pinczon


In Gerstenhaber's classical theory of deformations, the deformation parameter commutes with the original algebra. Motivated by some non classical deformations which recently appeared for quantization of Nambu mechanics, we introduce new deformations where the parameter no longer commutes with the original algebra. We find the associated cohomology and Gerstenhaber algebra and give rigidity and integrability criterions. We show that the Weyl algebra (though rigid in classical theory) can be nontrivially deformed, in super-commutative theory, to the supersymmetry enveloping algebra \(\mathcal{U}\;\left( {{\text{osp}}\left( {{\text{1,2}}} \right)} \right)\)

deformations cohomology quantization Gerstenhaber algebra. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnal, D., Ben Amor, H and Pinczon, G: The structure of sl(2, 1)-supersymmetry: irreducible representations and primitive ideals, Pacific J. Math. 165(1) (1994), 17–49.Google Scholar
  2. 2.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D: Deformation theory and quantization, I and II, Ann. of Phys. 111 (1978), 61–110, and 111–151.CrossRefGoogle Scholar
  3. 3.
    Cartan, H. and Eilenberg, S: Homological Algebra, Princeton University Press, 1956.Google Scholar
  4. 4.
    Connes, A., Flato, M. and Sternheimer, D.: Closed star-products and cyclic cohomology, Lett. Math. Phys., 24(1) (1991), 1–12; Flato, M. and Sternheimer, D.: Closedness of star-products and cohomology, in: Lie Theory and Geometry, Progress in Math., Birkhaüser, Basel, 1995, pp. 241–260.Google Scholar
  5. 5.
    Dito, G., Flato, M., Sternheimer, D. and Takhtajhan, L.: Deformation quantization and Nambu mechanics, Comm. Math. Phys. 183 (1997), 1–22; Dito, G. and Flato, M.: Generalized Abelian deformations, Lett.Math. Phys. 39 (1997), 107–125.Google Scholar
  6. 6.
    Drinfel'd, V. G.: Quantum groups, Proc. Internat. Congress of Math., Berkeley 1986 (1987), pp. 798–820.Google Scholar
  7. 7.
    Du Cloux, F.: Extensions entre représentations unitaires irréductibles des groupes de Lie nilpotents, Astérisque, 125–125 (1985) Soc. Math. France, pp. 129–211.Google Scholar
  8. 8.
    Gerstenhaber, M. and Schack, S.D.: Algebraic cohomology and deformation theory, in: Deformation Theory of Algebras and Structures NATO-ASI Series C.297, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar
  9. 9.
    Nadaud, F.: Preprint, Université de Bourgogne, Dijon, France.Google Scholar
  10. 10.
    Pinczon, G.: The enveloping algebra of the Lie superalgebra osp(1, 2), J. Algebra 132(1) (1990), 219–242.Google Scholar
  11. 11.
    Taylor, J. L.: A general framework for a multi-operator functional calculus, Adv. in Math. 9 (1972), 182–252.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Georges Pinczon
    • 1
  1. 1.Laboratoire de Physique-MathematiqueUniversité de BourgogneDijonFrance

Personalised recommendations