Journal of Neurocytology

, Volume 29, Issue 7, pp 471–484 | Cite as

Gecko vision—visual cells, evolution, and ecological constraints

  • Beate Röll


Geckos comprise both nocturnal and diurnal genera, and between these categories there are several transitions. As all geckos depend on their visual sense for prey capture, they are promising subjects for comparison of morphological modifications of visual cells adapted to very different photic environments. Retinae of 22 species belonging to 15 genera with different activity periods are examined electron microscopically. Scotopic and photopic vision in geckos is not divided between “classical” rods and cones, respectively; both are performed by one basic visual cell type. Independent of the activity periods of the individual species, the visual cells of geckos exhibit characteristics of cones at all levels of their ultrastructure. Thus, gecko retinae have to be classified as cone retinae. Only the large size and the shape of the photoreceptor outer segments in nocturnal geckos are reminiscent of rods; the outer segments are up to 60 μm in length and up to 10 μm in diameter. The visual cells of diurnal geckos have considerably smaller outer segments with lengths ranging from 6 to 12 μm and diameters ranging from 1.3 to 2.1 μm. Nocturnal and diurnal species differ in the structure of their ellipsoids. One type of visual cell in nocturnal geckos has modified mitochondria with either rudimentary cristae or no cristae at all, and one type of visual cell in diurnal geckos possesses an oil droplet. The visual cells of Phelsuma guentheri and Rhoptropus barnardi are intermediate between those of nocturnal and diurnal species.


Retina Individual Species Activity Period Outer Segment Visual Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANH, J. N. H. (1968) Ultrastructure des récepteurs visuels de la rétine de Lacerta viridis. Bulletin of the Association of Anatomists 53, 1247–1259.Google Scholar
  2. ARMENGOL, J. A., PRADA, F. & GENIS-GALVEZ, J. M. (1981) Oil droplets in the chameleon retina. Acta Anatomica 110, 35–39.Google Scholar
  3. ARNOLD, E. N. & GALLAGHER, M. D. (1977) Reptiles and amphibians from the mountains of Northern Oman with special reference to the Jebel Akhdar region. Journal of Oman Studies, Special Report 1, 59–80.Google Scholar
  4. BAYLOR, D. A. & FETTIPLACE, R. (1975) Light path and photon capture in turtle photoreceptors. Journal of Physiology 248, 433–464.Google Scholar
  5. BORWEIN, B. & HOLLENBERG, M. J. (1973) The photoreceptors of the "four-eyed" fish, Anableps anableps L. Journal of Morphology 140, 405–442.Google Scholar
  6. COLLIN, S. P., HOSKINS, R. V. & PARTRIDGE, J. C. (1997) Tubular eyes of deep-sea fishes: A comparative study of retinal topography. Brain, Behavior and Evolution 50, 335–357.Google Scholar
  7. CRESCITELLI, F. (1972) The visual cells and the visual pigments of the vertebrate eye. In Handbook of Sensory Physiology, Vol. VII/I (edited by DARTNALL, H. J. A.) pp. 245–363. New York, Springer-Verlag.Google Scholar
  8. DETWILER, S. R. & LAURENS, H. (1920) Studies on the retina. The structure of the retina of Phrynosoma cornutum. Journal of Comparative Neurology 32, 347–356.Google Scholar
  9. DONNELLAN, S. C., HUTCHINSON, M. N. & SAINT, K. M. (1999) Molecular evidence for the phylogeny of Australian gekkonoid lizards. Biological Journal of the Linnean Society 67, 97–118.Google Scholar
  10. DUNN, R. F. (1966) Studies on the retina of the gecko Coleonxy variegatus. Journal of Ultrastructure Research 16, 651–671.Google Scholar
  11. DUNN, R. F. (1969) The dimensions of rod outer segments related to light absorption in the gecko retina. Vision Research 9, 603–609.Google Scholar
  12. EAKIN, R. M. (1964) The effect of vitamin A deficiency on photoreceptors in the lizard Sceloporus occidentalis. Vision Research 4, 17–22.Google Scholar
  13. ENGSTRÖM, K. (1963) Structure, organization and ultrastructure of the visual cells in the teleost family Labridae. Acta Zoologica 44, 1–41.Google Scholar
  14. ISHIKAWA, T. & YAMADA, E. (1969) Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas. Investigative Ophthalmology 8, 302–316.Google Scholar
  15. IVES, J. T., NORMANN, R. A. & BARBER, P. W. (1983) Light intensification by cone oil droplets: Electromagnetic considerations. Journal of the Optical Society of America 73, 1725–1731.Google Scholar
  16. KLUGE, A. G. (1967) Higher taxonomic categories of gekkonid lizards and their evolution. Bulletin of the American Museum of Natural History 135, 1–59.Google Scholar
  17. KLUGE, A. G. (1987) Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Miscellaneous Publications of the Museum of Zoology 173, 1–54.Google Scholar
  18. KNABE, W., SKATCHKOV, S. & KUHN, H.-J. (1997) "Lens mitochondria" in the retinal cones of the tree-shrew Tupaia belangeri. Vision Research 37, 267–271.Google Scholar
  19. KOJIMA, D., OKANO, T., FUKADA, Y., SHICHIDA, Y., YOSHIZAWA, T. & EBREY, T. G. (1992) Cone visual pigments are present in gecko rod cells. Proceedings of the National Academy of Sciences USA 92, 2780–2784.Google Scholar
  20. PEDLER, C. (1969) Rods and cones—a new approach. International Reviews of General and Experimental Zoology 4, 219–274.Google Scholar
  21. PEDLER, C. & TILLY, R. (1964) The nature of the gecko visual cell. A light and electron microscopic study. Vision Research 4, 499–510.Google Scholar
  22. RICHARDSON, J. M. (1969) Cytoplasmic and ciliary connections between the inner and outer segments of mammalian photoreceptors. Vision Research 9, 727–731.Google Scholar
  23. RÖLL, B. (1990) Comparative studies of photoreceptor cells and visual pigments in nocturnal and diurnal geckos (Reptilia, Gekkonidae). [in German] Bochum: Ph.D. thesis, Ruhr-Universität.Google Scholar
  24. RÖLL, B. (1997) Photoreceptors of diurnal and nocturnal geckos. In Proceedings of the 25th Göttingen Neurobiology Conference Vol. II From membrane to mind (edited by ELSNER, N. & WÄSSLE, H.) p. 502. Thieme Stuttgart, New York.Google Scholar
  25. RÖLL, B. (1998a) Extrafoveal and foveal visual cells in the retina of Bouton's skink (Reptilia). In Proceedings of the 26th Göttingen Neurobiology Conference Vol. II New neuroethology on the move (edited by ELSNER, N. & WEHNER, R.) p. 435. Thieme Stuttgart, New York.Google Scholar
  26. RÖLL, B. (1998b) Rhoptropus barnardi HEWITT. Sauria 20, Suppl., 427–430.Google Scholar
  27. RÖLL, B. (1999) Biochemical and morphological aspects of the relationship of the Namaqua day gecko to Phelsuma recto Rhoptropus (Reptilia, Gekkonidae). Zoology 102, 50–60.Google Scholar
  28. RÖLL, B., AMONS, R. & DE JONG, W. W. (1996) Vitamin A2 bound to cellular retinol-binding protein as ultraviolet filter in the eye lens of the gecko Lygodactylus picturatus. Journal of Biological Chemistry 271, 10437–10440.Google Scholar
  29. RÖLL, B. & HORN, H.-G. (1999) The structure of the eye of the monitor lizard Varanus griseus caspius (Reptilia, Varanidae). In Advances in Monitor Research II. Mertensiella 11 (edited by HORN, H.-G. & BÖHME, W.) pp. 291–306.Google Scholar
  30. RÖLL, B. & SCHWEMER, J. (1999) t-Crystallin and vitamin A2-isomers in lenses of diurnal geckos. Journal of Comparative Physiology A 185, 51–58.Google Scholar
  31. STEINBERG, R. H. & WOOD, I. (1975) Clefts and microtubules of photoreceptor outer segments in the retina of the domestic cat. Journal of Ultrastructure Research 51, 397–403.Google Scholar
  32. TANIGUCHI, Y., HISATOMI, O., YOSHIDA, M. & TOKUNAGA, F. (1999) Evolution of visual pigments in geckos. FEBS Letters 445, 36–40.Google Scholar
  33. TANSLEY, K. (1964) The gecko retina. Vision Research 4, 33–37.Google Scholar
  34. UNDERWOOD, G. (1951) Reptilian retinas. Nature 167, 183–185.Google Scholar
  35. UNDERWOOD, G. (1957) On lizards of the family Pygopodidae. Journal of Morphology 100, 207–268.Google Scholar
  36. UNDERWOOD, G. (1970). The eye. In Biology of the Reptilia Vol. 2: Morphology B (edited by GANS, C.) pp. 1–97. Academic Press.Google Scholar
  37. VILTER, V. (1951) Valeur morphologique des photorécepteurs retiniens chez la hatterie (Sphenodon punctatus). Comptes Rendus de la Societé Biologique 145, 20–23.Google Scholar
  38. WAGNER, H.-J. (1978) Cell types and connectivity patterns in mosaic retinas. Advances in Anatomy, Embryology and Cell Biology 55, 1–81.Google Scholar
  39. WALLS, G. (1934) The reptilian retina. I. A new concept of visual cell evolution. American Journal of Ophthalmolology 17, 892–915.Google Scholar
  40. WALLS, G. (1942) The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills: Cranbrook Institute of Science.Google Scholar
  41. YAMADA, E. (1982) Morphology of vertebrate photoreceptors. Methods in Enzymology 81, 3–17.Google Scholar
  42. YOSHIDA, M. (1978) Some observations on the patency in the outer segments of photoreceptors of the nocturnal gecko. Vision Research 18, 137–143.Google Scholar
  43. YOUNG, S. R. & MARTIN, G. R. (1984) Optics of retinal oil droplets: A model of light collection and polarization detection in the avian retina. Vision Research 24, 129–137.Google Scholar
  44. ZAUNREITER, M., JUNGER, H. & KOTRSCHAL, K. (1991) Retinal morphology of cyprinid fishes: a quantitative histological study of ontogenetic and interspecific variation. Vision Research 31, 383–394.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Beate Röll
    • 1
  1. 1.Lehrstuhl für Tierphysiologie, Fakultät für BiologieRuhr-Universität BochumBochumGermany

Personalised recommendations