Advertisement

Photosynthetica

, Volume 38, Issue 2, pp 287–290 | Cite as

Effect of Salinity on Photosynthesis and Biochemical Characteristics in Mulberry Genotypes

  • P. Agastian
  • S.J. Kingsley
  • M. Vivekanandan
Article

Abstract

Mulberry genotypes were subjected to salinity (0–12 mS cm−1) in pot culture experiment. Chlorophyll and total carotenoid contents were reduced considerably by salinity. At low salinity, photosynthetic CO2 uptake increased over the control, but it decreased at higher salinity. Contents of soluble proteins, free amino acids, soluble sugars, sucrose, starch, and phenols increased at salinity of 1–2 mS cm−1 and decreased at higher salinity (8–12 mS cm−1). Glycine betaine accumulated more than proline, the maximum accumulation of both was at salinity of 2–4 mS cm−1. Among the genotypes studied, BC2-59 followed by S-30 showed better salinity tolerance than M-5.

carotenoids chlorophyll glycine betaine Morus alba phenols proline proteins saccharides starch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agastian, P.: Identification of Mulberry Genotypes for Coastal Salinity through Chemo-and Bio-Assay Tests.-Ph.D. Thesis. Bharathidasan University, Tiruchirappalli 1997.Google Scholar
  2. Anas, S.S.M., Vivekanandan, M.: Salinity responses of the triploid mulberry varieties.-Indian J. Seric. 33: 92-94, 1994.Google Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949.PubMedCrossRefGoogle Scholar
  4. Bates, L.S., Waldron, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-207, 1973.CrossRefGoogle Scholar
  5. Dubois, M., Gilles, K.N., Hamilton, J.K., Revers, P.A., Smith, F.: Colourimetric method for determination of sugars and related substances.-Anal. Chem. 28: 300-356, 1956.CrossRefGoogle Scholar
  6. Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes.-Annu. Rev. Plant Physiol. 28: 89-121, 1977.CrossRefGoogle Scholar
  7. Goodwin, T.W.: Carotenoids.-In: Peach, K., Tracey, M.V. (ed.): Handbook of Plant Analysis. Pp. 272-311. Springer-Verlag, Berlin 1954.Google Scholar
  8. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 193: 265-275, 1951.PubMedGoogle Scholar
  9. Mc Cready, R.M., Guggloz, J., Silvier, V., Owens, H.S.: Determination of starch and amylose in vegetables.-Anal. Chem. 22: 1156, 1950.CrossRefGoogle Scholar
  10. Peiris, B.D., Ranasinghe, A.: Effect of sodium chloride salinity on chlorophyll content in rice (Oryza sativa) leaves.-Indian J. Plant Physiol. 36: 257-258, 1993.Google Scholar
  11. Ramanjulu, S., Sreenivasalu, N., Giridhara Kumar, S., Sudhakar, C.: Photosynthetic characteristics in mulberry during water stress and rewatering.-Photosynthetica 35: 259-263, 1998a.CrossRefGoogle Scholar
  12. Ramanjulu, S., Sreenivasalu, N., Sudhakar, C.: Effect of water stress on photosynthesis in two mulberry genotypes with different drought tolerance.-Photosynthetica 35: 279-283, 1998b.CrossRefGoogle Scholar
  13. Ramanjulu, S., Veeranjaneyulu, K., Sudhakar, C.: Physiological changes induced by NaCl in mulberry var. Mysore local.-Indian J. Plant Physiol. 36: 273-275, 1993.Google Scholar
  14. Stewart, C.R., Hanson, A.D.: Proline accumulation as a metabolic response to water stress.-In: Turner, N.C., Kramer, P.J. (ed.): Adaptation of Plants to Water and High Temperature Stress. Pp. 173-189. Wiley and Sons, New York 1980.Google Scholar
  15. Stiborová, M., Kšinská, S., Březinová, A.: Effect of NaCl on the growth and biochemical characteristics of photosynthesis of barley and maize.-Photosynthetica 21: 320-328, 1987.Google Scholar
  16. Storey, R., Wyn Jones, R.G.: Quaternary ammonium compounds in plants in relation to salt resistance.-Phytochemistry 16: 447-453, 1977.CrossRefGoogle Scholar
  17. Swain, T., Hillis, W.O.: The phenolic constituents of Prunus domestica. The quantitative estimation of phenolic constituents.-J. Sci. Food Agric. 10: 63-68, 1959.CrossRefGoogle Scholar
  18. Troll, W., Canan, K.: A modified photometric ninhydrin method for the analysis of amino-imino acids.-J. biol. Chem. 200: 803-811, 1953.PubMedGoogle Scholar
  19. Van Handel, E.: Dried microdetermination of sucrose.-Ann. Biochem. 22: 280-283, 1968.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Agastian
    • 1
  • S.J. Kingsley
    • 1
  • M. Vivekanandan
    • 2
  1. 1.Department of BotanyLoyola CollegeChennaiIndia
  2. 2.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations