Advertisement

Molecular Biology Reports

, Volume 27, Issue 3, pp 175–180 | Cite as

Differential scanning calorimetry of chromatin at different levels of condensation

  • E. Cardellini
  • S. Cinelli
  • G.L. Gianfranceschi
  • G. Onori
  • A. Santucci
  • L. Urbanelli
Article

Abstract

The thermal denaturation of calf thymus total chromatin and of fractions enriched in heterochromatin or euchromatin, has been investigated by differential scanning calorimetry and compared to that of calf thymus DNA and DNA-histone complexes. In our experimental conditions, chromatin melts in three thermal transitions: the main one, assigned to separation of the DNA double helix, occurs at 83 °C, while the other two occur at 63 °C and 74 °C. The data show that: (a) the transition enthalpy for denaturation of DNA in the total chromatin and in DNA-histone complexes is nearly the same as that of DNA in solution; (b) the transition at 63 °C is present in the thermogram of the heterocromatin enriched fraction, while it is completely absent in that of the euchromatin enriched one. The results suggest that this transition can be attributed to the higher order structures of heterochromatin.

chromatin DNA DSC thermal denaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamond AI & Earnshaw W.C. (1998) Science 280: 547Google Scholar
  2. 2.
    Edmondson DG & Roth SY (1996) FASEB J. 10: 1173Google Scholar
  3. 3.
    Remboutsika E, Lutz Y, Gansmuller A, Vonesch JL, Losson R & Chambon P (1999) J. Cell Sci. 112: 1671Google Scholar
  4. 4.
    Maccioni E, Vergani L, Dembo A, Mascetti G & Nicolini C (1998) Mol. Biol. Rep. 25 (2): 73Google Scholar
  5. 5.
    Nicolini C, Trefiletti V, Cavazza C, Cuniberti C, Patrone E, Carlo P, & Brambilla C (1983) Science 219: 176Google Scholar
  6. 6.
    Nicolini C, Carrara S & Mascetti G (1997) Mol. Biol. Rep. 24: 235Google Scholar
  7. 7.
    Widom J (1986) J. Mol. Biol. 190: 411Google Scholar
  8. 8.
    Cavazza B, Brizzolara G, Lazzarini G, Patrone E, Piccardo M, Barboro P, Parodi S, Pasini A & Balbi C (1991) Biochemistry 30: 9060Google Scholar
  9. 9.
    Balbi C, Abelmoschi ML, Gogioso L, Parodi S, Cavazza B & Patrone E (1989) Biochemistry 28: 3220Google Scholar
  10. 10.
    Cole RD & Almagor M (1987) J. Biol. Chem. 262: 15071Google Scholar
  11. 11.
    Riehm MR & Herrington RE (1987) Biochemistry 26: 2878Google Scholar
  12. 12.
    Bostock CJ & Prescott DM (1971) J. Mol. Biol. 60: 151Google Scholar
  13. 13.
    Klump H & Burkart W (1977) Biochim. Biophys. Acta 475: 601Google Scholar
  14. 14.
    Touchette NA & Cole RD (1992) Biochemistry 31: 1842Google Scholar
  15. 15.
    Almagor M & Cole RD (1989) J. Biol. Chem. 264: 6515Google Scholar
  16. 16.
    Chambron J, Daune M & Sadron C (1996) Biochim. Biophys. Acta 123: 306Google Scholar
  17. 17.
    Semmel M & Daune M (1967) Biochim. Biophys. Acta 145: 561Google Scholar
  18. 18.
    Gniazdowski M, Tolwinska-Stanczyc Z, Wimanska D & Malagocka E (1997) Farmaco 52: 653Google Scholar
  19. 19.
    Gianfranceschi GL, Barra D, Bossa F, Coderoni S, Paparelli M, Venanzi F, Cicconi F & Amici D (1982) Biochim. Biophys. Acta 699: 138Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • E. Cardellini
    • 1
  • S. Cinelli
    • 2
  • G.L. Gianfranceschi
    • 1
  • G. Onori
    • 2
  • A. Santucci
    • 1
  • L. Urbanelli
    • 1
  1. 1.Dipartimento di Biologia Cellulare e Molecolare, Sez. di Fisiologia e BiofisicaUniversità di PerugiaPerugiaItaly
  2. 2.Istituto per la Fisica della Materia, Unità di Perugia and Dipartimento di FisicaUniversità di PerugiaPerugiaItaly

Personalised recommendations