, Volume 38, Issue 2, pp 171–186 | Cite as

Plant Responses to Drought, Acclimation, and Stress Tolerance

  • I. Yordanov
  • V. Velikova
  • T. Tsonev


At the whole plant level, the effect of stress is usually perceived as a decrease in photosynthesis and growth. That is why this review is focused mainly on the effect of drought on photosynthesis, its injury, and mechanisms of adaptation. The analysed literature shows that plants have evolved a number of adaptive mechanisms that allow the photochemical and biochemical systems to cope with negative changes in environment, including increased water deficit. In addition, the acquisition of tolerance to drought includes both phenotypic and genotypic changes. The approaches were made to identify those metabolic steps that are most sensitive to drought. Some studies also examined the mechanisms controlling gene expression and putative regulatory pathways.

chlorophyll fluorescence induction high temperature net photosynthetic rate photosystem 2 ribulose-1,5-bisphosphate carboxylase/oxygenase stomatal conductance water stress water use efficiency xanthophylls 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W.W., III, Demmig-Adams, B.: The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter.-Plant Cell Environ. 18: 117-127, 1995.CrossRefGoogle Scholar
  2. Alhadi, F.A., Yasseen, B.T., Jabr, M.: Water stress and gibberellic acid effects on growth of fenugreek plants.-Irrigation Sci. 18: 185-190, 1999.CrossRefGoogle Scholar
  3. Al-Khatib, K., Wiest, S.C.: Heat-induced reversible and irreversible alterations in the structure of Phaseolus vulgaris thylakoid proteins.-J. therm. Biol. 15: 239-244, 1990.CrossRefGoogle Scholar
  4. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition. Pp. 227-287. Elsevier, Amsterdam-New York-Oxford 1987.Google Scholar
  5. Baker, J., Steele, C., Dure, L., III: Sequence and characterisation of 6 Lea proteins and their genes from cotton.-Plant mol. Biol. 11: 277-291, 1988.CrossRefGoogle Scholar
  6. Bewley, J.D.: Physiological aspects of desiccation tolerance.-Annu. Rev. Plant Physiol. 30: 195-238, 1979.CrossRefGoogle Scholar
  7. Biehler, K., Fock, H.: Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat.-Plant Physiol. 112: 265-272, 1996.PubMedGoogle Scholar
  8. Blum, A.: Plant Breeding for Stress Environments.-Pp. 15-24. CRC Press, Boca Raton 1988.Google Scholar
  9. Blum, A.: Crop responses of drought and the interpretation of adaptation.-Plant Growth Regul. 20: 135-148, 1996.CrossRefGoogle Scholar
  10. Bohnert, H.J., Shen, B.: Transformation and compatible solutes.-Scientia Hort. 78: 237-260, 1999.CrossRefGoogle Scholar
  11. Bratt, C.E., Arvidsson, P.-O., Carlsson, M., Åkerlund, H.-E.: Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration.-Photosynth. Res. 45: 169-175, 1995.CrossRefGoogle Scholar
  12. Bunce, J.A.: Comparative responses of leaf conductance to humidity in single attached leaves.-J. exp. Bot. 32: 629-634, 1981.CrossRefGoogle Scholar
  13. Buschmann, C., Lichtenthaler, H.K.: Hill-activity and P700 concentration of chloroplasts isolated from radish seedlings treated with ß-indoleacetic acid, kinetin or gibberellic acid.-Z. Naturforsch. 32c: 798-802, 1977.Google Scholar
  14. Calatayud, A., Deltoro, V.I., Barreno, E., del Valle-Tascon, S.: Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection.-Physiol. Plant. 101: 93-102, 1997.CrossRefGoogle Scholar
  15. Caldwell, C.R., Whitman, C.E.: Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. I. Effect of temperature on membrane protein and lipid mobility.-Plant Physiol. 84: 918-923, 1987.PubMedCrossRefGoogle Scholar
  16. Cellier, F., Conéjéro, G., Breitler, J.-C., Casse, F.: Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance.-Plant Physiol. 116: 319-328, 1998.PubMedCrossRefGoogle Scholar
  17. Centritto, M., Magnani, F., Lee, H.S.J., Jarvis, P.G.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.-New Phytol. 141: 141-153, 1999.CrossRefGoogle Scholar
  18. Chaves, M.M.: Effects of water deficits on carbon assimilation.-J. exp. Bot. 42: 1-16, 1991.CrossRefGoogle Scholar
  19. Chernyadev, I.I.: Plant photosynthesis under conditions of water stress and the protective effect of cytokinins: a review.-Appl. Biochem. Microbiol. 33:1-12, 1997.Google Scholar
  20. Chetal, S., Wagle, D.S., Nainawatee, H.S.: Alteration in glycolipids of wheat and barley leaves under water stress.-Phytochemistry 21: 51-53, 1982.CrossRefGoogle Scholar
  21. Chetal, S., Wagle, D.S., Nainawatee, H.S.: Glycolipid changes in wheat and barley chloroplast under water stress.-Plant Sci. Lett. 20: 225-230, 1981.CrossRefGoogle Scholar
  22. Clark, H., Newton, P.C.D., Barker, D.J.: Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community.-J. exp. Bot. 50: 233-242, 1999.CrossRefGoogle Scholar
  23. Close, T.J.: Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.-Physiol. Plant. 97: 795-803, 1996.CrossRefGoogle Scholar
  24. Cona, A., Kučera, T., Masojídek, J., Geiken, B., Mattoo, A.K., Giardi, M.T.: Long-term drought stress symptom: structural and functional reorganization of photosystem II.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 521-524. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.Google Scholar
  25. Cornic, C., Massacci, A.: Leaf photosynthesis under drought stress.-In: Baker, N.R. (ed.): Photosynthesis and the Environment. Pp. 347-366. Kluwer Acad. Publ., Dordrecht-Boston-London 1996.Google Scholar
  26. Cornic, G., Briantais, J.-M.: Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress.-Planta 183: 178-184, 1991.CrossRefGoogle Scholar
  27. Cornic, G., Ghashghaie, J.: Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress.-Planta 185: 255-260, 1991.CrossRefGoogle Scholar
  28. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules.-Proc. nat. Acad. Sci. USA 83: 3811-3815, 1986.PubMedCrossRefGoogle Scholar
  29. Deltoro, V.I., Calatayud, A., Gimeno, C., Abadía, A., Barreno, E.: Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts.-Planta 207: 224-228, 1998.CrossRefGoogle Scholar
  30. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992.CrossRefGoogle Scholar
  31. Dhindsa, R.S., Matowe, W.: Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation.-J. exp. Bot. 32: 79-91, 1981.CrossRefGoogle Scholar
  32. Dickson, R.E., Tomlinson, P.T.: Oak growth, development and carbon metabolism in response to water stress.-Ann. Sci. forest. 53: 181-196, 1996.CrossRefGoogle Scholar
  33. Douglas, C.J.: Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees.-Trends Plant Sci. 1: 171-178, 1996.CrossRefGoogle Scholar
  34. Du, Y.C., Kawamitsu, Y., Nose, A., Hiyane, S., Murayama, S., Wasano, K., Uchida, Y.: Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.).-Aust. J. Plant Physiol. 23: 719-726, 1996.CrossRefGoogle Scholar
  35. Dure, L., III, Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T., Sung, Z.R.: Common amino acid sequence domains among the LEA proteins of higher plants.-Plant mol. Biol. 12: 475-486, 1989.CrossRefGoogle Scholar
  36. Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. 33: 317-345, 1982.CrossRefGoogle Scholar
  37. Farquhar, G.D., Wong, S.C., Evans, J.R., Hubick, K.T.: Photosynthesis and gas exchange.-In: Jones, H.G., Flowers, T.J., Jones, M.B. (ed.): Plants under Stress. Pp. 47-69. Cambridge University Press, Cambridge 1989.CrossRefGoogle Scholar
  38. Farrar, J.F., Smith, D.C.: Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase.-New Phytol. 77: 115-125, 1976.CrossRefGoogle Scholar
  39. Faver, K.L., Gerik, T.J., Thaxton, P.M., El-Zik, K.M.: Late season water stress in cotton: II: Leaf gas exchange and assimilation capacity.-Crop Sci. 36: 922-928, 1996.CrossRefGoogle Scholar
  40. Fedina, I.S., Tsonev, T., Guleva, E.I.: The effect of pretreatment with proline on the responses of Pisum sativum to salt stress.-Photosynthetica 29: 521-527, 1993.Google Scholar
  41. Ferrari-Iliou, R., Pham Thi, A.T., Vieira da Silva, J.: Effect of water stress on the lipid and fatty acid composition of cotton (Gossypium hirsutum) chloroplasts.-Physiol. Plant. 62: 219-224, 1984.CrossRefGoogle Scholar
  42. Flagella, Z., Campanile, R.G., Ronga, G., Stoppelli, M.C., Pastore, D., De Caro, A., Di Fonzo, N.: The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance.-Plant Sci. 118: 127-133, 1996.CrossRefGoogle Scholar
  43. Flagella, Z., Campanile, R.G., Stoppelli, M.C., De Caro, A., Di Fonzo N.: Drought tolerance of photosynthetic electron transport under CO2-enriched and normal air in cereal species.-Physiol. Plant. 104: 753-759, 1998.CrossRefGoogle Scholar
  44. Fox, T.C., Geiger, D.R.: Osmotic response of sugar beet source leaves at CO2 compensation point.-Plant Physiol. 80: 239-241, 1986.PubMedCrossRefGoogle Scholar
  45. Foyer, C.H., Harbinson, J.: Oxygen metabolism and the regulation of photosynthetic electron transport.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 1-42. CRC Press, Boca Raton-Ann Arbor-London-Tokyo 1994.Google Scholar
  46. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M.: Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling.-Physiol. Plant. 100: 241-254, 1997.CrossRefGoogle Scholar
  47. Gaff, D.F.: Responses of desiccation tolerant “resurrection” plants to water stress.-In: Kreeb, K.H., Richter, H., Hinckley, T.M. (ed.): Structural and Functional Responses to Environmental Stresses: Water Shortage. Pp. 255-268. SPB Acad. Publ., The Hague 1989.Google Scholar
  48. Gimenez, C., Mitchell, V.J., Lawlor, D.W.: Regulation of photosynthetic rate of two sunflower hybrids under water stress.-Plant Physiol. 98: 516-524, 1992.PubMedCrossRefGoogle Scholar
  49. Giordani, T., Natali, L., D'Ercole, A., Pugliesi, C., Fambrini, M., Vernieri, P., Vitagliano, C., Cavallini, A.: Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.).-Plant mol. Biol. 39: 739-748, 1999.PubMedCrossRefGoogle Scholar
  50. Girardi, M.T., Cona, B., Geiken, B., Kucera, T., Masojidek, J., Matoo, A.K.: Long-term drought stress induces structural and functional reorganization of photosystem II.-Planta 199: 118-125, 1996.CrossRefGoogle Scholar
  51. Gollan, T., Passioura, J.B., Munns, R.: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves.-Aust. J. Plant Physiol. 13: 459-464, 1986.CrossRefGoogle Scholar
  52. Gounaris, K., Brain, A.P.R., Quinn, P.J., Williams, W.P.: Structural re-organisation of chloroplast thylakoid membranes in response to heat-stress.-Biochim. biophys. Acta 766: 198-208, 1984.CrossRefGoogle Scholar
  53. Graan, T., Boyer, J.S.: Very high CO2 partially restores photosynthesis in sunflower at low leaf water potentials.-Planta 181: 378-384, 1990.CrossRefGoogle Scholar
  54. Groninger, J.W., Seiler, J.R., Zedaker, S.M., Berrang, P.C.: Photosynthetic response of loblolly pine and sweetgum seedling stands to elevated carbon dioxide, water stress, and nitrogen level.-Can. J. Forest Res. 26: 95-102, 1996.CrossRefGoogle Scholar
  55. Halliwell, B., Gutteringe, J.M.C.: Free Radicals in Biology and Medicine. 2nd Ed.-Clarendon Press, Oxford 1989.Google Scholar
  56. Havaux, M.: Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses.-Plant Physiol. 100: 424-432, 1992.PubMedCrossRefGoogle Scholar
  57. He, J., Chee, C.W., Goh, C.J.: “Photoinhibition” of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature.-Plant Cell Environ. 19: 1238-1248, 1996.CrossRefGoogle Scholar
  58. He, J.X., Wang, J., Liang, H.G.: Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves.-Physiol. Plant. 93: 771-777, 1995.CrossRefGoogle Scholar
  59. He, J.-X., Wen, J.-Q., Chong, K., Liang, H.-G.: Changes in the transcript levels of chloroplast psbA and psbD genes during water stress in wheat leaves.-Physiol. Plant. 102: 49-54, 1998.CrossRefGoogle Scholar
  60. Heber, U., Miyake, C., Mano, J., Ohno, C., Asada, K.: Monodehydroascorbate radical detected by electron-paramagnetic-resonance spectrometry is a sensitive probe of oxidative stress in intact leaves.-Plant Cell Physiol. 37: 1066-1072, 1996.Google Scholar
  61. Hendry, G.A.F., Finch-Savage, W.E., Thorpe, P.C., Atherton, N.M., Buckland, S.M., Nilsson, K.A., Seel, W.E.: Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur.-New Phytol. 122: 273-279, 1992.CrossRefGoogle Scholar
  62. Herppich, W.B., Peckmann, K.: Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia to short-term drought and rewatering.-J. Plant Physiol. 150: 467-474, 1997.Google Scholar
  63. Holaday, A.S., Ritchie, S.W., Nguyen, H.T.: Effects of water deficit on gas-exchange parameters and ribulose 1,5-bisphosphate carboxylase activation in wheat.-Environ. exp. Bot. 32: 403-410, 1992.CrossRefGoogle Scholar
  64. Horton, P., Ruban, A.V.: Regulation of photosystem II.-Photosynth. Res. 34: 375-385, 1992.CrossRefGoogle Scholar
  65. Huxman, T.E., Hamerlynck, E.P., Moore, B.D., Smith, S.D., Jordan, D.N., Zitzer, S.F., Nowak, R.S., Coleman, J.S., Seemann, J.R.: Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field (FACE) exposure.-Plant Cell Environ. 21: 1153-1161, 1998.CrossRefGoogle Scholar
  66. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377-403, 1996.PubMedCrossRefGoogle Scholar
  67. Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., Becana, M.: Oxidative damage in pea plants exposed to water deficit or paraquat.-Plant Physiol. 116: 173-181, 1998.CrossRefGoogle Scholar
  68. Jensen, M., Chakir, S., Feige, G.B.: Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction.-Photosynthetica 37: 393-404, 1999.CrossRefGoogle Scholar
  69. Kanechi, M., Kunitomo, E., Inagaki, N., Maekawa, S.: Water stress effects on ribulose-1,5-bisphosphate carboxylase and its relationship to photosynthesis in sunflower leaves.-In: Mathis, M. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 597-600. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.Google Scholar
  70. Kicheva, M.I., Tsonev, T.D., Popova, L.P.: Stomatal and nonstomatal limitations on photosynthesis in two wheat cultivars subjected to water stress.-Photosynthetica 30: 107-116, 1994.Google Scholar
  71. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.CrossRefGoogle Scholar
  72. Kubiske, M.E., Abrams, M.D.: Ecophysiological analysis of woody species in contrasting temperature communities during wet and dry years.-Oecologia 98: 303-312, 1994.CrossRefGoogle Scholar
  73. Kuiper, P.J.C.: Lipid metabolism as a factor in environmental adaptation.-In: Mazliak, P., Benveniste, P., Costes, C., Douce, R. (ed.): Biogenesis and Function of Plant Lipids. Pp. 169-176. Elsevier/North Holland Biomedical Press, Amsterdam 1980.Google Scholar
  74. Labhilili, M., Joudrier, P., Gautier, M.-F.: Characterazation of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance.-Plant Sci. 112: 219-230, 1995.CrossRefGoogle Scholar
  75. Lal, A., Edwards, G.E.: Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity.-Aust. J. Plant Physiol. 23: 403-412, 1996.CrossRefGoogle Scholar
  76. Lal, A., Ku, M.S.B., Edwards, G.E.: Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba — electron transport, CO2 fixation and carboxylation capacity.-Photosynth. Res. 49: 57-69, 1996.CrossRefGoogle Scholar
  77. Larcher, W.: Streß bei Pflanzen.-Naturwissenschaften 74: 158-167, 1987.CrossRefGoogle Scholar
  78. Levine, R.L., Garland, D., Oliver, C., Amici, A., Climent, I., Lenz, A., Ahn, B., Shaltiel, S., Stadtman, E.R.: Determination of carbonyl content in oxidatively modified proteins.-Methods Enzymol. 186: 464-478, 1990.PubMedCrossRefGoogle Scholar
  79. Li, Z., Oda, M., Okada, K., Sasaki, H.: Changes in thermotolerance of photosynthetic apparatus in cucumber leaves in response to water stress and exogenous ABA treatments.-J. jap. Soc. hort. Sci. 65: 587-594, 1996.CrossRefGoogle Scholar
  80. Liang, N., Maruyama, K.: Interactive effects of CO2 enrichment and drought stress on gas-exchange and water-use efficiency in alnus-firma.-Environ. exp. Bot. 35: 353-361, 1995.CrossRefGoogle Scholar
  81. Lichtenthaler, H.K.: Adaptation of leaves and chloroplasts to high quanta fluence rates.-In: Akoyunoglou, G. (ed.): Photosynthesis. Vol. VI. Pp. 273-287. Balaban Int. Sci. Services, Philadelphia 1981.Google Scholar
  82. Lichtenthaler, H.K.: Vegetation stress: an introduction to the stress concept in plants.-J. Plant Physiol. 148: 4-14, 1996.Google Scholar
  83. Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.-Photosynth. Res. 2: 115-141, 1981.CrossRefGoogle Scholar
  84. Lichtenthaler, H.K., Meier, D., Buschmann, C.: Development of chloroplasts at high and low light quanta fluence rates.-Isr. J. Bot. 33: 185-194, 1984.Google Scholar
  85. Liljenberg, C.S.: The effects of water deficit stress on plant membrane lipids.-Progr. Lipid Res. 31: 335-343, 1992.CrossRefGoogle Scholar
  86. Logan, B.A., Barker, D.H., Demmig-Adams, B., Adams, W.W.: Acclimation of leaf carotenoid composition and ascorbate content to gradients in the light environment within an Australian rainforest.-Plant Cell Environ. 19: 1083-1090, 1996.CrossRefGoogle Scholar
  87. Loggini, B., Scartazza, A., Brugnoli, E., Navari-Izzo, F.: Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought.-Plant Physiol. 119: 1091-1099, 1999.PubMedCrossRefGoogle Scholar
  88. Ludlow, M.M.: Contribution of osmotic adjustment to the maintenance of photosynthesis during water stress.-In: Biggins, J. (ed.): Progress in Photosynthesis Research. Vol. 4. Pp. 161-168. Mertinus Nijhoff Publ., Dordrecht-Boston-Lancaster 1987.Google Scholar
  89. Martin, B.A., Schoper, J.B., Rinne, R.W.: Changes in soybean (Glycine max L. Merr.) glycerolipids in response to water stress.-Plant Physiol. 81: 798-801, 1986.PubMedCrossRefGoogle Scholar
  90. Massacci, A., Battistelli, A., Loreto, F.: Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum.-Aust. J. Plant Physiol. 23: 331-340, 1996.CrossRefGoogle Scholar
  91. Mattos, E.A., Herzog, B., Lüttge, U.: Chlorophyll fluorescence during CAM-phases in Clusia minor L. under drought stress.-J. exp. Bot. 50: 253-261, 1999.CrossRefGoogle Scholar
  92. Meenks, D.D.L., Tuba, Z., Czintalan, Z.: Ecophysiological responses of Tortula ruralis upon transplantation around a power plant in West Hungary.-J. Hattory bot. Lab. 69: 21-35, 1991.Google Scholar
  93. Mittler, R., Zilinskas, B.: Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought.-Plant J. 5: 397-405, 1994.PubMedCrossRefGoogle Scholar
  94. Monteiro de Paula, F., Pham Thi, A.T, Viera da Silva, J., Justin, A.M., Demandre, C., Mazliak, P.: Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves.-Plant Sci. 66: 185-193, 1990.CrossRefGoogle Scholar
  95. Monteiro de Paula, F., Pham Thi, A.T., Zuily-Fodil, Y., Ferrari-Iliou, R., Vieira da Silva, J., Mazliak, P.: Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata.-Plant Physiol. Biochem. 31: 707-715, 1993.Google Scholar
  96. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P.: Drought induces oxidative stress in pea plants.-Planta 194: 346-352, 1994.CrossRefGoogle Scholar
  97. Morgan, J.M.: Osmoregulation and water stress in higher plants.-Annu. Rev. Plant Physiol. 35: 299-319, 1984.CrossRefGoogle Scholar
  98. Munné-Bosch, S., Alegre, L.: Role of dew on the recovery of water-stressed Melisa officinalis L. plants.-J. Plant Physiol. 154: 759-766, 1999.Google Scholar
  99. Mvé Akamba, L., Siegenthaler, P.A.: Effet de l'acide linolénique sur la photosynthèse de chloroplastes intacts de feuilles d'Épinard.-Physiol. vég. 18: 689-701, 1980.Google Scholar
  100. Mwanamwenge, J., Loss, S.P., Siddique, K.H.M., Cocks, P.S.: Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.).-Eur. J. Agron. 11: 1-11, 1999.CrossRefGoogle Scholar
  101. Nash, T. H., III, Reiner, A., Demmig-Adams, B., Kilian, E., Kaiser, W.M., Lange, O.L.: The effect of atmosferic desiccation and osmotic water stress on photosynthesis and dark respiration in lichens.-New Phytol. 116: 269-276, 1990.CrossRefGoogle Scholar
  102. Navari-Izzo, F., Vangioni, N., Quartacci, M.F.: Lipids of soybean and sunflower seedlings grown under drought conditions.-Phytochemistry 29: 2119-2123, 1989.CrossRefGoogle Scholar
  103. Olsson, M., Nilsson, K., Liljenberg, C., Hendry, G.A.F.: Drought stress in seedlings: lipid metabolism and lipid peroxidation during recovery from drought in Lotus corniculatus and Cerastium fontanum.-Physiol. Plant. 96: 577-584, 1996.CrossRefGoogle Scholar
  104. Öquist, G.: Seasonally induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus silvestris. A correlation between the level of unsaturation of monogalactosyldiglyceride and the rate of electron transport.-Plant Physiol. 69: 869-875, 1982.PubMedCrossRefGoogle Scholar
  105. Ort, D.R., Oxborough, K., Wise, R.R.: Depressions of photosynthesis in crops with water deficits.-In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 315-329. Bios Scientific Publishers, Oxford 1994.Google Scholar
  106. Ouvrard, O., Cellier, F., Ferrare, K., Tousch, D., Lamaze, T., Dupuis, J.-M., Casse-Delbart, F.: Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype.-Plant mol. Biol. 31: 819-829, 1996.PubMedCrossRefGoogle Scholar
  107. Panković, D., Sakač, Z., Kevrešan, S., Plesničar, M.: Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism.-J. exp. Bot. 50: 127-138, 1999.CrossRefGoogle Scholar
  108. Pastori, G.M., Trippi, V.S.: Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain.-Plant Cell Physiol. 33: 957-961, 1992.Google Scholar
  109. Pelah, D., Altman, A., Shoseyov, O.: Drought tolerance: a molecular perspective.-In: Altman, A., Ziv, M. (ed.): Horticulture Biotechnology. In Vitro Culture and Breeding. Pp. 439-445. ISHS, 1997.Google Scholar
  110. Peltier, J.-P., Marigo, G.: Drought adaptation in Fraxinus excelsior L.: Physiological basis of the elastic adjustment.-J. Plant Physiol. 154: 529-535, 1999.Google Scholar
  111. Pham Thi, A.T., Flood, C., Vieira da Silva, J.: Effects of water stress on lipid and fatty-acid composition of cotton leaves.-In: Wintermans, J.F.G.M., Kuiper, P.J.C. (ed.): Biochemistry and Metabolism of Plant Lipids. Pp. 451-454. Elsevier, Amsterdam 1982.Google Scholar
  112. Pham Thi, A.T., Vieira da Silva, J., Mazliak, P.: The role of membrane lipids in plant resistance to water stress.-Bull. Soc. Bot. Fr. 137: 99-114, 1990.Google Scholar
  113. Pol, M., Gołębiowska, D., Miklewska, J.: Influence of enhanced concentration of carbon dioxide and moderate drought on fluorescence induction in white clover (Trifolium repens L.).-Photosynthetica 37: 537-542, 1999.CrossRefGoogle Scholar
  114. Polle, A., Rennenberg, H.: Photooxidative stress in tress.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants. Pp. 199-218. CRC Press, Boca Raton 1994.Google Scholar
  115. Prakash, K.R., Rao, V.S.: The altered activities of carbonic-anhydrase, phosphoenol pyruvate-carboxylase and ribulose-bisphosphate carboxylase due to water-stress and after its relief.-J. environ. Biol. 17: 39-42, 1996.Google Scholar
  116. Pruvot, G., Cuiné, S., Peltier, G., Rey, P.: Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants.-Planta 198: 471-479, 1996.PubMedCrossRefGoogle Scholar
  117. Quartacci, M.F., Pinzino, C., Sgherri, C.L.M., Navari-Izzo, F.: Lipid composition and protein dynamics in thylakoids of two wheat cultivars differently sensitive to drought.-Plant Physiol. 108: 191-197, 1995.PubMedGoogle Scholar
  118. Quick, P., Siegl, G., Neuhaus, E., Feil, R., Stitt, M.: Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase.-Planta 177: 535-546, 1989.CrossRefGoogle Scholar
  119. Repellin, A., PhamThi, A.T., Tashakorie, A., Sahsah, Y., Daniel, C., Zuily-Fodil, Y.: Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L.).-Eur. J. Agron. 6: 25-33, 1997.CrossRefGoogle Scholar
  120. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357-384, 1993.CrossRefGoogle Scholar
  121. Ruban, A.V., Horton, P.: Regulation on non-photochemical quenching of chlorophyll fluorescence in plants.-Aust. J. Plant Physiol. 22: 221-230, 1995.CrossRefGoogle Scholar
  122. Ruban, A.V., Rees, D., Pascal, A.A., Horton, P.: Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids.-Biochim. biophys. Acta 1102: 39-44, 1992.CrossRefGoogle Scholar
  123. Sarafis, V.: Chloroplasts: a structural approach.-J. Plant Physiol. 152: 248-264, 1998.Google Scholar
  124. Schindler, C., Lichtenthaler, H.: Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence?-Plant Physiol. Biochem. 32: 813-823, 1994.Google Scholar
  125. Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day.-J. Plant Physiol. 148: 399-412, 1996.Google Scholar
  126. Schwab, K.B., Schreiber, U., Heber, U.: Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration.-Planta 177: 217-227, 1989.CrossRefGoogle Scholar
  127. Schwanz, P., Picon, C., Vivin, P., Dreyer, E., Guehl, J.-M., Polle, A.: Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2.-Plant Physiol. 110: 393-402, 1996.PubMedGoogle Scholar
  128. Sgherri, C.L.M., Pinzino, C., Navari-Izzo, F., Kylin, A.: Sunflower seedlings subjected to increasing stress by water deficit: Changes in O2 production related to the composition of thylakoid membranes.-Physiol. Plant. 96: 446-452, 1996.CrossRefGoogle Scholar
  129. Shangguan, Z., Shao, M., Dyckmans, J.: Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought.-J. Plant Physiol. 154: 753-758, 1999.Google Scholar
  130. Sharma, P.K., Singhal, G.S.: Effect of water stress on primary photosynthetic process: interaction with light and temperature.-Indian J. Biochem. Biophys. 30: 10-14, 1993.PubMedGoogle Scholar
  131. Stefanov, K., Markovska, Y., Kimenov, G., Popov, S.: Lipid and sterol changes in leaves of Haberlea rhodopensis and Ramonda serbica at transition from biosis into anabiosis and vice versa caused by water stress.-Phytochemistry 31: 2309-2314, 1992.CrossRefGoogle Scholar
  132. Stevanovic, B., Thu, P.T.A., DaSilva, J.V.: Effects of dehydration and rehydration on polar lipid and fatty-acid composition of Ramonda species.-Can. J. Bot. 70: 107-113, 1992.CrossRefGoogle Scholar
  133. Stewart, R.C., Bewley, J.D.: Stability and synthesis of phospholipids during desiccation and rehydration of desiccation-tolerant and desiccation-intolerant moss.-Plant Physiol. 69: 724-727, 1982.PubMedCrossRefGoogle Scholar
  134. Stoyanova, D., Yordanov, I.: Influence of drought, high temperature, and carbamide cytokinin 4-PU-30 on photosynthetic activity of plants. 2. Chloroplast ultrastructure of primary bean leaves.-Photosynthetica 37: 621-625, 1999.CrossRefGoogle Scholar
  135. Straub, V., Lichtenthaler, H.K.: Die Wirkung von ß-Indolessigsäure auf die Bildung der Chloroplastenpigmente, Plastidenchinone und Anthocyane in Raphanus-Keimlingen.-Z. Pflanzenphysiol. 70: 23-45, 1973.Google Scholar
  136. Süss, K.-H., Yordanov, I.T.: Biosynthetic cause of in vivo acquired thermotolerance of photosynthetic light reactions and metabolic responses of chloroplasts to heat stress.-Plant Physiol. 81: 192-199, 1986.PubMedCrossRefGoogle Scholar
  137. Tardieu, F.: Drought perception by plants. Do cells of droughted plants experience water stress?-Plant Growth Regul. 20: 93-104, 1996.CrossRefGoogle Scholar
  138. Tezara, W., Lawlor, D.W.: Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 625-628. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.Google Scholar
  139. Todorov, D., Alexieva, V., Karanov, E.: Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions.-J. Plant Growth Regul. 17: 197-203, 1998.PubMedCrossRefGoogle Scholar
  140. Todorov, D., Alexieva, V., Karanov, E.: Effect of some phenyl amines on maize plants grown under drought induced by polyethylene glycol.-Compt. rend. Acad. bulg. Sci. 53(4): 103-106, 2000.Google Scholar
  141. Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Nagy, Z., Szente, K.: Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz.-Planta 192: 414-420, 1994.CrossRefGoogle Scholar
  142. Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Nagy, Z., Szente, K.: Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation.-Physiol. Plant. 96: 383-388, 1996.CrossRefGoogle Scholar
  143. Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Pócs, T.: Regreening of desicated leaves of the poikilochlorophyllous Xerophyta scabrida upon rehydration.-J. Plant Physiol. 142: 103-108, 1993.Google Scholar
  144. Uprety, D.C., Mishra, R.S., Abrol, Y.P.: Effect of elevated CO2 on the photosynthesis, growth and water relation of Brassica species under moisture stress.-J. Agron. Crop Sci. 175: 231-237, 1995.CrossRefGoogle Scholar
  145. van Rensburg, L., Krüger, C.H.J., Krüger, H.: Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L.-J. Plant Physiol. 141: 188-194, 1993.Google Scholar
  146. Vassey, T.L., Sharkey, T.D.: Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity.-Plant Physiol. 89: 1066-1070, 1989.PubMedCrossRefGoogle Scholar
  147. Vieira da Silva, J., Naylor, A.W., Kramer, P.J.: Some ultrastructural and enzymatic effects of water stress in cotton (Gossypium hirsutum L.) leaves.-Proc. nat. Acad. Sci. USA 71: 3243-3247, 1974.CrossRefGoogle Scholar
  148. Whetten, R., Sederoff, R.: Lignin biosynthesis.-Plant Cell 7: 1001-1013, 1995.PubMedCrossRefGoogle Scholar
  149. Willekens, H., Inze, D., van Montagu, M., van Camp, W.: Catalases in plants.-Mol. Breed. 1: 207-228, 1995.CrossRefGoogle Scholar
  150. Wise, R.R., Ortiz-Lopez, A., Ort, D.R.: Spatial distribution of photosynthesis during drought in field-grown and acclimated and nonacclimated growth chamber-grown cotton.-Plant Physiol. 100: 26-32, 1991.CrossRefGoogle Scholar
  151. Yong, C.B., Jin Jung: Water deficit induced oxidative stress and antioxidative defenses in rice plants.-J. Plant Physiol. 155: 255-261, 1999.Google Scholar
  152. Yordanov, I., Georgieva, K., Tsonev, T., Goltsev, V., Merakchiiska, M.: Effect of carbamide cytokinin 4PU-30 on the photosynthesis of bean plants endured drought and high temperature stresses.-In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Vol. IV. Pp. 2577-2580. Kluwer Acad. Publ., Dordrecht-Boston-London 1998.Google Scholar
  153. Yordanov, I., Tsonev, T., Goltsev, V., Kruleva, L., Velikova, V.: Interactive effect of water deficit and high temperature on photosynthesis in sunflower and maize plants. 1. Changes in the parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching.-Photosynthetica 33: 391-402, 1997a.Google Scholar
  154. Yordanov, I., Tsonev, T,. Goltsev, V., Merakchiïska-Nikolova, M., Georgieva, K.: Gas exchange and chlorophyll fluorescence during water and high temperature stresses and recovery. Probable protective effect of carbamide cytokinin 4-PU30.-Photosynthetica 33: 423-431, 1997b.Google Scholar
  155. Yordanov, I., Velikova, V., Tsonev, T.: Influence of drought, high temperature and carbamide cytokinin 4-PU-30 on photosynthetic activity of plants. 1. Changes in chlorophyll fluorescence quenching.-Photosynthetica 37: 447-457, 1999.CrossRefGoogle Scholar
  156. Zhang, J., Schurr, U., Davies, W.J.: Control of stomatal behaviour by abscissic acid which apparently originates in the roots.-J. exp. Bot. 38: 1174-1181, 1987.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • I. Yordanov
    • 1
  • V. Velikova
    • 1
  • T. Tsonev
    • 1
  1. 1.Institute of Plant PhysiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations