Inflammation

, Volume 25, Issue 2, pp 109–117

Glucocorticoids and TGF-β1 Synergize in Augmenting Fibroblast Mediated Contraction of Collagen Gels

  • Fu-Qiang Wen
  • C. Magnus Sköld
  • Xiang-Der Liu
  • Ronald F. Ertl
  • Yun Kui Zhu
  • Tadashi Kohyama
  • Hangjun Wang
  • Stephen I. Rennard
Article

Abstract

TGF-β plays a central role in the initiation and progression of pulmonary fibrosis. Glucocorticoids are frequently used to treat fibrotic diseases, but beneficial effects are often modest. Both TGF-β and glucocorticoids have been reported to increase fibroblast contraction of native collagen gels, a model of fibrotic tissue remodeling. Therefore, we sought to determine how glucocorticoids interact with TGF-β in this system. In this study, human fetal lung fibroblasts (HFL-1) were pretreated with or without TGF-β for 72 h before they were cast into type I collagen gels. Various concentrations of glucocorticoids (budesonide or hydrocortisone) were added at the time of casting. Gel size was then monitored at different times after gel release. The surrounding media were collected for the assay of prostaglandin E2 (PGE2) and the cell lysates were analyzed for cyclooxygenase (COX) expression by immunoblot. Glucocorticoids alone significantly enhanced fibroblast-mediated contraction of collagen gels (P < 0.01) and dose-dependently inhibited PGE2 release by HFL-1 fibroblasts. TGF-β significantly augmented gel contraction but also induced a 30% increase in PGE2 release and increased the expression of COX-1. Glucocorticoids inhibited TGF-β1 induced-PGE2 release, and enhanced TGF-β augmented gel contraction without significantly affecting TGF-β augmented COX-1 expression. Indomethacin, a COX inhibitor, increased TGF-β augmented gel contraction but had no further effect when added together with glucocorticoids. Thus, glucocorticoids can synergize with TGF-β in augmenting fibroblast mediated collagen gel contraction through the inhibition of PGE2 production. Such interactions between glucocorticoids and TGF-β may account, in part, for the lack of response of fibrotic diseases to glucocorticoids.

glucocorticoids transforming growth factor-β (TGF-β) prostaglandin collagen gel contraction fibroblast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mio, T., Y. Adachi, D. J. Romberger, R. F. Ertl and S. I. Rennard 1996. Regulation of fibroblast proliferation in three dimensional collagen gel matrix. In Vitro Cell Deve. Biol. 32: 427–433.Google Scholar
  2. 2.
    Elsdale, T. and J. Bard. 1972. Collagen substrata for studies on cell behavior. J. Cell Biol. 54: 626–637.Google Scholar
  3. 3.
    Labarca, C. and K. Paigen. 1980. A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352.PubMedGoogle Scholar
  4. 4.
    Bergman, I. and R. Loxley. 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Chem. 35: 1961–1965.Google Scholar
  5. 5.
    Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.PubMedGoogle Scholar
  6. 6.
    Tomasek, J. J., C. J. Haaksma, R. J. Eddy and M. B. Vaughan. 1992. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232: 359–368.PubMedGoogle Scholar
  7. 7.
    Skold, C. M., X. Liu, Y. K. Zhu, T. Umino, K. Takigawa, Y. Ohkuni, R. F. Ertl, J. R. Spurzem, D. J. Romberger, R. Brattsand and S. I. Rennard. 1999. Glucocorticoids augment fibroblast mediated contraction of collagen gels by inhibition of endogenous PGE production. Proc. Assn. Am. Phys. 111: 249–258.Google Scholar
  8. 8.
    Coulomb, B., L. Dubertret, E. Bell and R. Touraine. 1984. The contractility of fibroblasts in a collagen lattice is reduced by corticosteroids. J. Invest. Derm. 82: 341–344.PubMedGoogle Scholar
  9. 9.
    Singer, A. J. and R. A. F. Clark. 1999. Cutaneous wound healing. N. Engl. J. Med. 341: 738–746.PubMedGoogle Scholar
  10. 10.
    Rennard, S. 1997. Pathophysiological mechanisms of COPD. Eur. Respir. Rev. 7: 206–210.Google Scholar
  11. 11.
    Rennard, S. I. 1999. Inflammation and repair processes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 160: S12–S16.PubMedGoogle Scholar
  12. 12.
    Ehrlich, H. P. and D. J. Wyler. 1983. Fibroblast contraction of collagen lattices in vitro: Inhibition by chronic inflammatory cell mediators. J. Cell Phys. 116: 345–351.Google Scholar
  13. 13.
    Schalkwijk, C., M. Vervoordeldonk, J. Pfeilschifter, F. Marki and H. Van Den Bosch. 1991. Cytokine-and forskolin-induced syntehsis of group II phosphilipase A2 and prostaglandin E2 in rat mesangial cells is prevented by dexamethasone. Biochem. Biophys. Res. Commun. 180: 46–52.PubMedGoogle Scholar
  14. 14.
    Nakano, T., O. O., H. Teraoka and H. Arita. 1990. Glucocorticoids suppress group II phosphilipase A2 production by blocking mRNA synthesis and posttranscriptional expression. J. Biol. Chem. 265: 12745–12748.PubMedGoogle Scholar
  15. 15.
    Goulding, N. J., J. L. Godolphin and P. R. Sharland. 1990. Antiinflammatory lipocortin 1 production by peripheral leucocytes in response to hydrocortisone. Lancet. 335: 1416–1418.PubMedGoogle Scholar
  16. 16.
    Peers, S. H., F. Smillie, A. J. Elderfield and R. J. Flower. 1993. Glucocorticoid and non-glucocorticoid induction of lipocortins (annexins) 1 and 2 in rat peritoneal leucocytes in vivo. Br. J. Pharmacol. 108: 66–72.PubMedGoogle Scholar
  17. 17.
    Errasfa, M. and F. Russo-Marie. 1989. A purified lipocortin shares the anti-inflammatory effect of glucocorticosteroids in vivo in mice. Br. J. Pharmacol. 97: 1051–1058.PubMedGoogle Scholar
  18. 18.
    Solito, E., G. Raugei, M. Melli and L. Paretne. 1991. Dexamethasone induces the expression of the mRNA of lipocortin 1 and 2 and the release of lipocortin 1 and 5 in differentiated but not undifferentiated U-937 cells. FEBS Lett. 291: 238–244.PubMedGoogle Scholar
  19. 19.
    Liu, X. D., R. Ertl, C. M. Sköld, K. Takigawa, D. J. Romberger, J. R. Spurzem and S. I. Rennard. 1997. TGF-β pretreated human fetal lung fibroblasts possess enhanced ability to contract type I collagen gels. Am. J. Respir. Crit. Care Med. 155: A178.Google Scholar
  20. 20.
    Ziesche, R., E. Hofbauer, K. Wittmann, V. Petkov and L. H. Block. 1999. A preliminary study of long-term treatment with interferon gramma-1β and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N. Eng. J. Med. 341: 1264–1269.Google Scholar
  21. 21.
    Burke, C., C. K. Power, A. Norris, A. Condez, B. Schmekel and L. W. Poulter. 1992. Lung function and immunopathological changes after inhaled corticosteroid therapy in asthma. Eur. Respir. J. 5: 73–79.PubMedGoogle Scholar
  22. 22.
    Trigg, C. J., N. D. Manolitsas, J. Wang, M. A. Calderon, A. McAulay, S. E. Jordan, M. J. Herdman, N. Jhalli, J. M. Duddle, S. A. Hamilton, J. L. Devalia and R. J. Davies. 1994. Placebo-controlled immunopathologic study of four months of inhaled corticosteroids in asthma. Am. J. Respir. Crit. Care Med. 150: 17–22.PubMedGoogle Scholar
  23. 23.
    Laiinene, A., A. Altraja, M. Kämpe, M. Linden, I. Virtanen and L. A. Laitinene. 1997. Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am. J. Respir. Crit. Care Med. 156: 951–958.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Fu-Qiang Wen
    • 1
    • 2
  • C. Magnus Sköld
    • 3
  • Xiang-Der Liu
    • 1
    • 2
  • Ronald F. Ertl
    • 1
    • 2
  • Yun Kui Zhu
    • 1
    • 2
  • Tadashi Kohyama
    • 1
    • 2
  • Hangjun Wang
    • 1
    • 2
  • Stephen I. Rennard
    • 1
    • 2
  1. 1.Pulmonary and Critical Care Medicine Section, Department of Internal MedicineUniversity of Nebraska Medical Center
  2. 2.Nebraska Medical CenterOmaha
  3. 3.Department of MedicineKarolinska HospitalStockholmSweden

Personalised recommendations