Molecular Biology Reports

, Volume 27, Issue 3, pp 157–165 | Cite as

Characterization of human and mouse H19 regulatory sequences

  • Gabriel Banet
  • Osnat Bibi
  • Imad Matouk
  • Suhail Ayesh
  • Morris Laster
  • Katherine Molner Kimber
  • Mark Tykocinski
  • Nathan de Groot
  • Abraham Hochberg
  • Patricia Ohana
Article

Abstract

H19 is expressed in a large percentage of bladder tumors, but not expressed in healthy bladder tissue. The aim of this study is to define H19 optimal transcriptional regulatory sequences in tumor cells, which can potentially be used to control expression of a toxin gene in constructs to be used in bladder cancer gene therapy trials in mice and human. Transient expression assays revealed that elements responsible for promoter activity are contained within the 85 bp upstream region. The transcriptional activity of this region was strongly inhibited by the methylation of the Hpa II sites. A modest cell specificity is conferred by the upstream sequences. The human and murine promoter activities were significantly increased by the human H19 4.1 kb enhancer sequence. The 85 bp H19 upstream region contains all the elements to interact with the enhancer. We showed that the human H19 promoter is highly active in a murine bladder carcinoma cell line, justifying its use to drive the expression of a cytotoxin gene in gene therapy trials in mice.

bladder carcinoma H19 gene H19 regulatory sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brannan CI, Dees EC, Ingram RS & Tighlman SM (1990) Mol. Cell. Biol. 10: 28–36Google Scholar
  2. 2.
    Hao Y, Crenshaw T, Moulton T, Newcomb E & Tycko B (1993) Nature 365: 764–767Google Scholar
  3. 3.
    Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, Lagrou C, Stehelin D, Coll J & Curgy JJ (1998) Oncogene 16: 2395–2401Google Scholar
  4. 4.
    Lustig-Yariv O, Schulze E, Komitowski D, Erdmann V, Schneider T, de Groot N & Hochberg A (1997) Oncogene 15: 169–177Google Scholar
  5. 5.
    Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G & Ohlsson Pfeifer RSJ (1998) Biol. Chem. 273: 2847–28252Google Scholar
  6. 6.
    Cooper M, Fisher M, Komitowski D, Shevelev A, Schulze E, Ariel I, Tykocinski, M, Miron S, Ilan J, de Groot N & Hochberg A (1996) J. Urol. 155: 2110–2133Google Scholar
  7. 7.
    Ariel I, Ayesh S, Perlman E, Pizov G, Tanos V, Scheider T, Erdmann V, Podeh D, Komitowski D, Quasem AS, de Groot N & Hochberg A (1997) Clin. Mol. Pathol. 50: 34–44Google Scholar
  8. 8.
    Ariel I, Miao H, Ji XR, Schneider T, de Groot N, Hochberg A & Ayesh S (1998) J. Clin. Pathol. Mol. Pathol. 51: 21–25Google Scholar
  9. 9.
    Ariel I, Lustig O, Schneider T, Sappir M, de-Groot N & Hochberg A (1995) Urology 45: 335–338Google Scholar
  10. 10.
    Pachnis V, Belayew A & Tilghman SM (1984) Proc. Natl. Acad. Sci. USA 81: 5523–5527Google Scholar
  11. 11.
    Yoo-Warren H, Pachnis V, Ingram RS & Tilghman SM (1988) Mol. Cell.Biol. 8: 4707–4715Google Scholar
  12. 12.
    Kopf E, Bibi O, Ayesh S, Tykocinski M, Vitner K, de Groot N & Hochberg A (1998) FEBS Lett. 432: 123–127Google Scholar
  13. 13.
    Ohana P, Kopf E, Bibi O, Ayesh S, Schneider T, Laster M, Tykocinski M, de Groot N & Hochberg A (1999) FEBS Lett. 454: 81–84Google Scholar
  14. 14.
    Li E, Beard C & Jaenisch R (1993) Nature 366: 362–365Google Scholar
  15. 15.
    Surani MA (1993) Nature 366: 302–303Google Scholar
  16. 16.
    Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T & Tycko B (1993) Am. J. Hum. Genet. 53(1): 113–124Google Scholar
  17. 17.
    Elkin M, Ayesh S, Schneider T, de Groot N, Hochberg A & Ariel I (1998) Carcinogenesis 19: 2095–2099Google Scholar
  18. 18.
    Szabo PE, Pfeifer GP & Mann JR (1998) Mol. Cell. Biol. 18 (11): 6767–6776.Google Scholar
  19. 19.
    Hanson RW (1998) J. Biol. Chem. 273: 28543–28544Google Scholar
  20. 20.
    Croniger C, Trus M, Lysek-Stupp K, Cohen H., Liu Y, Darlington GJ, Poli V, Hanson RW & Reshef L (1997) J. Biol. Chem. 272: 26306–26312Google Scholar
  21. 21.
    Lekstrom-Himes J & Xanthopoulos KG (1998) J. Biol. Chem. 273: 28545–28548Google Scholar
  22. 22.
    Voutilainen R, Ilvesmaki V, Ariel I, Rachmilewitz J, de-Groot N & Hochberg A (1994) Endocrinology 134 (5): 2051–2056Google Scholar
  23. 23.
    Ben-Haltar J, Beard P & Jirleny J (1989) Nuclei Acids Res. 17 (24): 10179–10189Google Scholar
  24. 24.
    Baylin SB & Herman JG (2000) TIG 16 (4): 168–174.Google Scholar
  25. 25.
    Stein R, Razin A & Cedar H (1982) Proc. Natl. Acad. Sci. USA 79: 3418–3422Google Scholar
  26. 26.
    Vardimon L, Kressmann A, Cedar H, Maechler M & Doerfler, W (1982) Proc. Natl. Acad. Sci USA 79: 1073–1077.Google Scholar
  27. 27.
    Meehan R, Lewis J, Cross S, Nan X, Jeppesen P & Bird A (1992) J. Cell Sci. Suppl. 16: 9–14.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gabriel Banet
    • 1
  • Osnat Bibi
    • 2
  • Imad Matouk
    • 2
  • Suhail Ayesh
    • 2
  • Morris Laster
    • 2
  • Katherine Molner Kimber
    • 1
  • Mark Tykocinski
    • 1
  • Nathan de Groot
    • 2
  • Abraham Hochberg
    • 2
  • Patricia Ohana
    • 2
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Medical CenterPhiladelphiaUSA
  2. 2.Department of Biological Chemistry, The Silberman Institute of Life SciencesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations