Advertisement

Glycoconjugate Journal

, Volume 16, Issue 11, pp 731–739 | Cite as

The presence of N-acetylneuraminic acid in Malpighian tubules of larvae of the cicada Philaenus spumarius

  • Yanina N. Malykh
  • Brigitte Krisch
  • Rita Gerardy-Schahn
  • Elena B. Lapina
  • Lee Shaw
  • Roland Schauer
Article

Abstract

Sialic acid-containing glycoconjugates are generally considered to be unique to the deuterostomes, a lineage of the animal kingdom which includes animals from the echinoderms up to the vertebrates. There are, however, two isolated reports of sialic acid occurring in the insect species Drosophila melanogaster and Galleria mellonella. Since insects are classified as protostomes, these findings call previous assumption on the phylogenetic distribution and thus on the evolution of sialic acids into question. Here, we report the occurrence of N-acetylneuraminic acid (Neu5Ac) in larvae of the cicada Philaenus spumarius. Cytochemical analysis of larval sections with lectins from Sambucus nigra and Limax flavus suggested the presence of sialic acids in the concrement vacuoles of the Malpighian tubules. The monoclonal antibody MAb 735, which is specific for polysialic acid, labelled the same structures. A chemical analysis performed by HPLC of fluorescent derivatives of sialic acids and by GLC-MS provided sound evidence for the presence of Neu5Ac in the Philaenus spumarius larvae. These data suggest that in this cicada Neu5Ac occurs in α2,8-linked polysialic acid structures and in α2,6-linkages. The results provide further evidence for the existence of sialic acids in insects and in linkages known to occur in glycoconjugates of deuterostomate origin.

N-acetylneuraminic acid polysialic acid insects lectins Malpighian tubules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelm S, Schauer R (1997) Sialic cids in molecular and cellular interactions. In Int. Rev. Cytology vol. 175 (Jeon KW, Jarnik JW, eds), Academic Press, San Diego, pp. 137–240.Google Scholar
  2. 2.
    Varki A (1992) Diversity in the sialic acids. Glycobiology 2: 25–40.Google Scholar
  3. 3.
    Warren L (1963) The distribution of sialic acids in nature. Comp Biochem Physiol 10: 153–71.Google Scholar
  4. 4.
    Corfield AP, Schauer R (1982) In Sialic AcidsChemistry, Metabolism and Function (Schauer R, ed) Cell Biology Monogr 10: pp 5–39. Wien/New York: Springer-Verlag.Google Scholar
  5. 5.
    Schauer R, Kamerling, JP (1997) Chemistry, biochemistry and biology of sialic acids. In Glycoproteins II, Vol. 29b (Montreuil J, Vliegenthart JFG, Schachter H, eds) pp 243–402. Amsterdam: Elsevier.Google Scholar
  6. 6.
    Schauer R, Vliegenthart JFG (1982) Introduction. In Sialic Acids, Chemistry, Metabolism and Function (Schauer R, ed) Cell Biology Monogr 10: pp 1–3. Wien/New York: Springer-Verlag.Google Scholar
  7. 7.
    Roggentin P, Schauer R, Hoyer LL, Vimr ER (1993) The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9: 915–21.Google Scholar
  8. 8.
    Jarvis DL, Finn EE (1995) Biochemical analysis of the Nglycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212: 500–11Google Scholar
  9. 9.
    März L, Altmann F, Staudacher E, Kubelka V (1995) Protein glycosylation in insects. In Glycoproteins I, Vol. 29a (Montreuil J, Vliegenthart JFG, Schachter H, eds) pp 543–63. Amsterdam: Elsevier.Google Scholar
  10. 10.
    Altmann F (1997) More than silk and honey——or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconjugate J 14: 643–6.Google Scholar
  11. 11.
    Lopez M, Tetaert D, Juliant S, Gazon M, Cerutti M, Verbert A, Delannoy P (1999) O-glycosylation potential of lepidopteran insect cell lines. Biochim Biophys Acta 1427: 49–61.Google Scholar
  12. 12.
    Hafer J, Ferenz H-J (1991) Locust vitellogenin receptor: an acidic glycoprotein with N-and O-linked oligosaccharides. Comp Biochem Physiol 100B: 579–86.Google Scholar
  13. 13.
    Rolle RS, Lawrence PO (1994) Characterisation of a 24 kD parasitism-specific hemolymph protein from pharate pupae of the Caribbean fruit fly Anastrepha suspensa. Arch Insect Biochem Physiol 25: 227–44.Google Scholar
  14. 14.
    Roth J, Kemp A, Reuter G. Schauer R, Gehring WJ (1992) Occurrence of sialic acids in Drosophila melanogaster. Science 256: 673–5.Google Scholar
  15. 15.
    Karaçali S, Kirmizigül S, Deveci R, Deveci Ö, Onat T, Gürcü B (1997) Presence of sialic acid in prothoracic glands of Galleria mellonella (Lepidoptera). Tissue & Cell 29: 315–21.Google Scholar
  16. 16.
    Frosch M, Görgen I, Boulnois GJ, Timmis KN, Bitter-Suermann D (1985) NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: Isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc Natl Acad Sci. USA 82: 1194–8.Google Scholar
  17. 17.
    Veh RW, Michalski JC, Corfield AP, Sander-Wewer M, Gies D, Schauer R (1981) A new chromatographic system for the rapid analysis and preparation of colostrum sialyloligosaccharides. J Chromatogr 212: 313–22.Google Scholar
  18. 18.
    Gerardy-Schahn R, Bethe A, Brennecke T, Möhlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M (1995) Molecular cloning and functional expression of bacteriophage PKIEencoded endoneuraminidase Endo NE. Mol Microbiol 16: 441–50.Google Scholar
  19. 19.
    Mawhinney TP, Chance DL (1994) Hydrolysis of sialic acids and O-acetylated sialic acids with propionic acid. Anal Biochem 223: 164–7.Google Scholar
  20. 20.
    Reuter G, Schauer R (1994) Determination of sialic acids. Methods Enzymol. 230: 168–99.Google Scholar
  21. 21.
    Malykh YN, Shaw L, Schauer R (1998) The role of CMP-Nacetylneuraminic acid hydroxylase in determining the level of Nglycolylneuraminic acid in porcine tissues. Glycoconjugate J 15: 885–93.Google Scholar
  22. 22.
    Reuter G, Schauer R (1994) Enzymic methods of sialic acid analysis. In Methods in Carbohydrate Chemistry, 10 (BeMiller JN, Manners DJ, Sturgeon RJ, eds) pp 29–39. New York: John Wiley & Sons.Google Scholar
  23. 23.
    Kamerling JP. Vliegenthart JFG (1982) Gas-liquid chromatography and mass spectrometry of sialic acids. In Sialic Acids Chemistry, Metabolism and Function (Schauer R, ed) Cell Biology Monogr 10: pp 95–125. Wien/New York: Springer-Verlag.Google Scholar
  24. 24.
    Wang WC, Cummings RD (1988) The immobilised leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α2,3 to penultimate galactose residues. J Biol Chem 263: 4576–85.Google Scholar
  25. 25.
    Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WI (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Acα2,6Gal/GalNAc sequence. J Biol Chem 262: 1596–601.Google Scholar
  26. 26.
    Miller RL, Collawn JF Jr, Fish WW (1982) Purification and macromolecular properties of a sialic acid-specific lectin from the slug Limax flavus. J Biol Chem 257: 7574–80.Google Scholar
  27. 27.
    Seifert G (1995) In Entomologisches Praktikum (Seifert G, ed) pp 67–70. Stuttgart—New York: Georg Thieme Verlag.Google Scholar
  28. 28.
    Mello MLS (1979) A mucous secretion in the Malpighian tubes of a neotropical bumblebec, Bombus atratus Franklin. Protoplasma 99: 147–58.Google Scholar
  29. 29.
    Troy II FA (1995) Sialobiology and the polysialic acid glycotope: occurrence, structure, function, synthesis, and glycopathology. In Biology of the Sialic Acids (Rosenberg A, ed) pp 95–144. New York: Plenum Press.Google Scholar
  30. 30.
    Inoue S, Inoue Y (1997) Fish glycoproteins. In Glycoproteins II, Vol. 29b (Montreuil J. Vliegenthart JFG. Schachter H, eds) pp 143–72. Amsterdam: Elsevier.Google Scholar
  31. 31.
    Svoboda M, Przybylski M, Schreurs J, Miyajima A, Hogeland K, Deinzer M (1991) Mass spectrometric determination of glycosylation sites and oligosaccharide composition of insect-expressed mouse interleukin-3. J Chromatog 562: 403–19.Google Scholar
  32. 32.
    Davis TR, Wood HA (1995) Intrinsic glycosylation potentials of insect cell cultures and insect larvae. In Vitro Cell Dev Biol.-Animal 31: 659–63.Google Scholar
  33. 33.
    Licari PJ, Jarvis DL, Bailey JE (1993) Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotechnol Prog 9: 146–52.Google Scholar
  34. 34.
    Amino R, Porto RM, Chammas R, Egami MI, Schenkman S (1998) Identification and characterization of a sialidase released by the salivary gland of the hematophagous insect Triatoma infestans. J Biol Chem 273: 24575–82.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Yanina N. Malykh
    • 1
    • 3
  • Brigitte Krisch
    • 2
  • Rita Gerardy-Schahn
    • 4
  • Elena B. Lapina
  • Lee Shaw
    • 1
  • Roland Schauer
    • 1
  1. 1.Biochemisches InstitutChristian-Albrechts-Universität KielKielGermany and
  2. 2.Anatomisches InstitutChristian-Albrechts-Universität KielKielGermany
  3. 3.Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, ulMoscowRussian Federation
  4. 4.Institut für Medizinische Mikrobiologie, Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations