Advertisement

Journal of Neurocytology

, Volume 29, Issue 1, pp 19–30 | Cite as

A comparison of synaptic protein localization in hippocampal mossy fiber terminals and neurosecretory endings of the neurohypophysis using the cryo-immunogold technique

  • Lixia Zhang
  • Walter Volknandt
  • Eckart D. Gundelfinger
  • Herbert Zimmermann
Article

Abstract

In central synapses synaptic vesicle docking and exocytosis occurs at morphologically specialized sites (active zones) and requires the interaction of specific proteins in the formation of a SNARE complex. In contrast, neurosecretory terminals lack active zones. Using the cryo-immunogold technique we analyzed the localization of synaptic vesicle proteins and of proteins of the docking complex at active zones. This was compared to the localization of the identical proteins in neurosecretory terminals. In addition we compared the vesicular and granular localization of the proteins investigated. Synaptic vesicles in rat hippocampal mossy fiber synapses and microvesicles in the neurosecretory terminals of the neurohypophysis contained in common the proteins VAMP II (a v-SNARE), SV2, rab3A, and N-type Ca2+ channels. Only minor immunolabeling for these proteins was observed at neurosecretory granules. These results support the notion of a close functional identity of microvesicles from neurosecretory endings of the neurohypophysis and of synaptic vesicles. The vesicular pool of N-type Ca2+ channels may serve their stimulation-induced translocation into the plasma membrane. We find increased labeling for VAMP II, SNAP-25, N-type Ca2+ channels and of rab3A at the active zones of mossy fiber synapses. Labeling at release sites is by far highest for Bassoon, a high molecular weight protein of the active zone. The labeling pattern implies an association of Bassoon with presynaptic dense projections. Bassoon is absent from neurosecretory terminals and VAMP II, SNAP-25, rab3A, and N-type Ca2+ channels reveal a scattered distribution over the plasma membrane. The competence of the presynaptic active zone for selective vesicle docking may not primarily result from its contents in SNARE proteins but rather from the preformation of presynaptic dense projections as structural guides for vesicle exocytosis.

Keywords

Synaptic Vesicle Active Zone Mossy Fiber Snare Complex High Molecular Weight Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BRANCHAW, J. L., BANKS, M. I. & JACKSON, M. B. (1997) Ca2+-and voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. Journal of Neuroscience 17, 5772–5781.PubMedGoogle Scholar
  2. BRANDSTÄTTER, J. H., FLETCHER, E. L., GARNER, C. C., GUNDELFINGER, E. D. & WÄSSLE, H. (1999) Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. European Journal of Neuroscience 11, 3683–3693.PubMedGoogle Scholar
  3. CASTEL, M., MORRIS, J. & BELENKY, M. (1996) Nonsynaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. Neuro Report 7, 543–547.Google Scholar
  4. DUC, C. & CATSICAS, S. (1995) Ultrastructural localization of SNAP-25 within the rat spinal cord and peripheral nervous system. Journal of Comparative Neurology 356, 152–163.PubMedGoogle Scholar
  5. EGGER, C., KIRCHMAIR, R., KAPELARI, S., FISCHER-COLBRIE, R., HOGUE-ANGELETTI, R. & WINKLER, H. (1994) Bovine posterior pituitary-presence of p65 (synaptotagmin), PC1, PC2 and secretoneurin in large dense core vesicles. Neuroendocrinology 59, 169–175.PubMedGoogle Scholar
  6. FASSHAUER, D., SUTTON, R. B., BRUNGER, A. T. & JAHN, R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proceedings of the National Academy of Sciences, USA 95, 15781–15786.Google Scholar
  7. FEANY, M. B., LEE, S., EDWARDS, R. H. & BUCKLEY, K. M. (1992) The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70, 861–867.PubMedGoogle Scholar
  8. GALLI, T., GARCIA, E. P., MUNDIGL, O., CHILCOTE, T. J. & DE CAMILLI, P. (1995) v-and t-SNAREs in neuronal exocytosis: A need for additional components to define sites of release. Neuropharmacology 34, 1351–1360.PubMedGoogle Scholar
  9. GARCIA, E. P., MCPHERSON, P. S., CHILCOTE, T. J., TAKEI, K. & DE CAMILLI, P. (1995) Rbsec1a and b colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. Journal of Cell Biology 129, 105–120.PubMedGoogle Scholar
  10. GEPPERT, M. & SÑDHOF, T. C. (1998) RAB3 and synaptotagmin: The yin and yang of synaptic membrane fusion. Annual Reviews of Neuroscience 21, 75–95.Google Scholar
  11. GIOVANNUCCI, D. R. & STUENKEL, E. L. (1997) Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings. Journal of Physiology, London 498, 735–751.Google Scholar
  12. GRIFFITHS, G. (1993) Fine Structure Immunocytochemistry. Berlin: Springer.Google Scholar
  13. HAYASHI, T., SOULIE, F., NAKATA, T. & HIROKAWA, N. (1994) Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell Structure and Function 19, 253–262.PubMedGoogle Scholar
  14. HÖHNE-ZELL, B. & GRATZL, M. (1996) Adrenal chromaffin cells contain functionally different SNAP-25 monomers and SNAP-25/syntaxin heterodimers. FEBS Letters 394, 109–116.PubMedGoogle Scholar
  15. HONG, R. M., MORI, H., FUKUI, T., MORIYAMA, Y., FUTAI, M., YAMAMOTO, A., TASHIRO, Y. & TAGAYA, M. (1994) Association of N-ethylmaleimide-sensitive factor with synaptic vesicles. FEBS Letters 350, 253–257.PubMedGoogle Scholar
  16. JIANG, L. & PATEL, D. J. (1998) The synaptic SNARE complex is a parallel four stranded helical bundle. Nature Structural Biology 5, 765–774.PubMedGoogle Scholar
  17. JURGUTIS, P., SHUANG, R. Q., FLETCHER, A. & STUENKEL, E. L. (1996) Characterization and distribution of SNARE proteins at neuroendocrine nerve endings. Neuroendocrinology 64, 379–392.PubMedGoogle Scholar
  18. KRETZSCHMAR, S., VOLKNANDT, W. & ZIMMERMANN, H. (1996) Colocalization of syntaxin and SNAP-25 with synaptic vesicle proteins: A re-evaluation of functional models required? Neuroscience Research 26, 141–148.PubMedGoogle Scholar
  19. LEGENDRE, P. & POULAIN, D. A. (1992) Intrinsic mechanisms involved in the electrophysiological properties of the vasopressin-releasing neurons of the hypothalamus. Progress in Neurobiology 38, 1–17.PubMedGoogle Scholar
  20. LUCKMAN, S. M. & BICKNELL, R. J. (1990) Morphological plasticity that occurs in the neurohypophysis following activation of the magnocellular neurosecretory system can be mimicked in vitro by β-adrenergic stimulation. Neuroscience 39, 701–709.PubMedGoogle Scholar
  21. MARXEN, M., MAIENSCHEIN, V., VOLKNANDT, W. & ZIMMERMANN, H. (1997) Immunocytochemical localization of synaptic proteins at vesicular organelles in PC12 cells. Neurochemical Research 22, 941–950.PubMedGoogle Scholar
  22. MEEKER, R. B., SWANSON, D. J., GREENWOOD, R. S. & HAYWARD, J. N. (1991) Ultrastructural distribution of glutamate immunoreactivity within neurosecretory endings and pituicytes of the rat neurohypophysis. Brain Research 564, 181–193.PubMedGoogle Scholar
  23. MEIR, A., GINSBURG, S., BUTKEVICH, A., KACHALSY, S. G., KAISERMAN, I., AHDUT, R., DEMIRGOREN, S. & RAHAMIMOFF, R. (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiological Reviews 79, 1019–1088.PubMedGoogle Scholar
  24. MOREL, N., TAUBENBLATT, P., SYNGUELAKIS, M. & SHIFF, G. (1998) A syntaxin SNAP 25 VAMP complex is formed without docking of synaptic vesicles. Journal of Physiology, Paris 92, 389–392.Google Scholar
  25. MORIYAMA, Y., YAMAMOTO, A., YAMADA, H., TASHIRO, Y., TOMOCHIKA, K. I., TAKAHASHI, M., MAEDA, M. & FUTAI, M. (1995) Microvesicles isolated from bovine posterior pituitary accumulate norepinephrine. Journal of Biological Chemistry 270, 11424–11429.PubMedGoogle Scholar
  26. MORRIS, J. F. & POW, D. V. (1991) Widespread release of peptides in the central nervous system-Quantitation of tannic acid-captured exocytoses. Anatomical Records 231, 437–445.Google Scholar
  27. MORRIS, J., POW, D. & SHAW, F. (1998) Release of neuropeptides from magnocellular neurones: Does anatomical compartmentation have a functional significance? In Neurosecretion. Cellular Aspects of the Production and Release of Neuropeptides (edited by PICKERING, B. T, WAKERLY, J. B. & SUMMERLEE, A. J. S.), pp. 113–122. New York and London: Plenum Press.Google Scholar
  28. NAVONE, F., DI GIOIA, G., JAHN, R., BROWNING, M., GREENGARD, P. & DE CAMILLI, P. (1989) Microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of presynaptic nerve terminals. Journal of Cell Biology 109, 3425–3433.PubMedGoogle Scholar
  29. NORDMANN, J. J. & CHEVALLIER, J. (1980) The role of microvesicles in buffering [Ca2+]i in the neurohypophysis. Nature 287, 54–56.Google Scholar
  30. PASSAFARO, M., ROSA, P., SALA, C., CLEMENTI, F. & SHER, E. (1996) N-type Ca2+ channels are present in secretory granules and are transiently translocated to the plasma membrane during regulated exocytosis. Journal of Biological Chemistry 271, 30096–30104.PubMedGoogle Scholar
  31. PFENNINGER, K. H., AKERT, K., MOOR, H. & SANDRI, C. (1972) The fine structure of freeze-fractured presynaptic membranes. Journal of Neurocytology 1, 129–149.PubMedGoogle Scholar
  32. POW, D.V. & MORRIS, J. F. (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32, 435–439.PubMedGoogle Scholar
  33. PUPIER, S., LEVEQUE, C., MARQUEZE, B., KATAOKA, M., TAKAHASHI, M. & SEAGAR, M. J. (1997) Cysteine string proteins associated with secretory granules of the rat neurohypophysis. Journal of Neuroscience 17, 2722–2727.PubMedGoogle Scholar
  34. RICHTER, K., LANGNAESE, K., KREUZ, M. R., OLIAS, G., ZHAI, W., SCHEICH, H., GARNER, C. C. & GUNDELFINGER, E. D. (1999) The presynaptic cytomatrix protein Bassoon is located at both excitatory and inhibitory synapses of the brain. Journal of Comparative Neurology 408, 437–448.PubMedGoogle Scholar
  35. ROBINSON, L. J. & MARTIN, T. F. J. (1998) Docking and fusion in neurosecretion. Current Opinions in Cell Biology 10, 483–492.Google Scholar
  36. SCHULZE, K. L., BROADIE, K., PERIN, M. S. & BELLEN, H. J. (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311–320.PubMedGoogle Scholar
  37. SESACK, S. R. & SNYDER, C. L. (1995) Cellular and subcellular localization of syntaxin-like immunoreactivity in the rat striatum and cortex. Neuroscience 67, 993–1007.PubMedGoogle Scholar
  38. SHENG, Z. H., WESTENBROEK, R. E. & CATTERALL, W. A. (1998) Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery. Journal of Bioenergetics and Biomembranes 30, 335–345.PubMedGoogle Scholar
  39. SÖLLNER, T., WHITEHEART, S. W., BRUNNER, M., ERDJUMENT-BROMAGE, H., GEROMANOS, S., TEMPST, P. & ROTHMAN, J. E. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.PubMedGoogle Scholar
  40. STANLEY, E. F. (1997) The calcium channel and the organization of the presynaptic transmitter release face. Trends in Neurosciences 20, 404–409.PubMedGoogle Scholar
  41. TAGAYA, M., GENMA, T., YAMAMOTO, A., KOZAKI, S. & MIZUSHIMA, S. (1996) SNAP-25 is present on chromaffin granules and acts as a SNAP receptor. FEBS Letters 394, 83–86.PubMedGoogle Scholar
  42. TAGAYA, M., TOYONAGA, S., TAKAHASHI, M., YAMAMOTO, A., FUJIWARA, T., AKAGAWA, K., MORIYAMA, Y. & MIZUSHIMA, S. (1995) Syntaxin 1 (HPC-1) is associated with chromaffin granules. Journal of Biological Chemistry 270, 15930–15933.PubMedGoogle Scholar
  43. TAUBENBLATT, P., DEDIEU, J. C., GULIK-KRZYWICKI & MOREL, N. (1999) VAMP (synaptobrevin) is present in the plasma membrane of nerve terminals. Journal of Cell Science 112, 3559–3567.PubMedGoogle Scholar
  44. THURESON-KLEIN, Å. K. & KLEIN, R. L. (1990) Exocytosis from neuronal large dense-cord vesicles. International Review of Cytology 121, 67–126.PubMedGoogle Scholar
  45. TOKUYASU, K. T. (1973) A technique for ultracryotomy of cell suspensions and tissues. Journal of Cell Biology 57, 551–565.PubMedGoogle Scholar
  46. TOM DIECK, S. T., SANMARTIVILA, L., LANGNAESE, K., RICHTER, K., KINDLER, S., SOYKE, A., WEX, H., SMALLA, K. H., KAMPF, U., FRANZER, J. T., STUMM, M., GARNER, C. C. & GUNDELFINGER, E. D. (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. Journal of Cell Biology 142, 499–509.PubMedGoogle Scholar
  47. TWEEDLE, C. D. & HATTON, G. I. (1982) Magnocellular neuropeptidergic terminals in the neurohypophysis: Rapid glial release of enclosed axons during parturition. Brain Research Bulletin 8, 205–209.PubMedGoogle Scholar
  48. WALCH-SOLIMENA, C., BLASI, J., EDELMANN, L., CHAPMAN, E. R., VON MOLLARD, G. F. & JAHN, R. (1995) The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. Journal of Cell Biology 128, 637–645.PubMedGoogle Scholar
  49. WALCH-SOLIMENA, C., TAKEI, K., MAREK, K. L., MIDYETT, K., SÑDHOF, T. C., DE CAMILLI, P. & JAHN, R. (1993) Synaptotagmin-A membrane constituent of neuropeptide-containing large dense-core vesicles. Journal of Neuroscience 13, 3895–3903.PubMedGoogle Scholar
  50. WISER, O., BENNETT, M. K. & ATLAS, D. (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L-and N-type Ca2+ channels. EMBO Journal 15, 4100–4110.PubMedGoogle Scholar
  51. ZIMMERMANN, H. (1993) Synaptic Transmission. Cellular and Molecular Basis. Stuttgart, New York: Thieme/Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Lixia Zhang
    • 1
  • Walter Volknandt
    • 1
  • Eckart D. Gundelfinger
    • 2
  • Herbert Zimmermann
    • 1
  1. 1.Biozentrum der J.WGoethe-Universität, AK NeurochemieFrankfurt am MainGermany
  2. 2.Leibniz-Institut für NeurobiologieMagdeburgGermany

Personalised recommendations