Plasma Chemistry and Plasma Processing

, Volume 20, Issue 3, pp 279–297 | Cite as

Transport Coefficients of Hydrogen and Argon–Hydrogen Plasmas

  • A. B. Murphy
Article

Abstract

Calculated values of the viscosity, thermal conductivity, and electrical conductivity of hydrogen and mixtures of argon and hydrogen at high temperatures are presented. Combined ordinary, pressure, temperature, and electric field diffusion coefficients are also given for the mixtures. The calculations, which assume local thermodynamic equilibrium, are performed for atmospheric pressure plasmas in the temperature range from 300 to 30,000 K. The results are compared with those of previously published studies. Generally, the agreement is reasonable; those discrepancies that exist are attributed to the improved values of some of the collision integrals used here in calculating the transport coefficients.

Transport coefficients transport properties viscosity thermal conductivity electrical conductivity diffusion coefficient Chapman–Enskog method hydrogen argon plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994).Google Scholar
  2. 2.
    A. B. Murphy, Plasma Chem. Plasma Process. 15, 279 (1995).Google Scholar
  3. 3.
    A. B. Murphy, IEEE Trans. Plasma Sci. 25, 809 (1997).Google Scholar
  4. 4.
    J. J. Lowke, R. Morrow, J. Haidar, and A. B. Murphy, IEEE Trans. Plasma Sci. 25, 925 (1997).Google Scholar
  5. 5.
    P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997).Google Scholar
  6. 6.
    A. B. Murphy, Phys. Rev. E 48, 3594 (1993); erratum 50, 5145 (1994).Google Scholar
  7. 7.
    A. B. Murphy, J. Phys. D: Appl. Phys. 29, 1922 (1996).Google Scholar
  8. 8.
    A. B. Murphy, J. Phys. D: Appl. Phys. 31, 3383 (1998).Google Scholar
  9. 9.
    A. B. Murphy, Phys. Rev. E 55, 7473 (1997).Google Scholar
  10. 10.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, 2nd edn., New York: Wiley (1964).Google Scholar
  11. 11.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edn., Cambridge, UK: Cambridge University Press (1970).Google Scholar
  12. 12.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Amsterdam: North-Holland (1972).Google Scholar
  13. 13.
    J. R. Stallcop, E. Levin, and H. Partridge, J. Thermophys. Heat Transfer 12, 514 (1998).Google Scholar
  14. 14.
    J. R. Stallcop, H. Partridge, and E. Levin, Chem. Phys. Lett. 254, 25 (1996).Google Scholar
  15. 15.
    J. Aubreton and P. Fauchais, Rev. Phys. Appl. 18, 51 (1983).Google Scholar
  16. 16.
    A. M. Dunker and R. G. Gordon, J. Chem. Phys. 68, 700 (1978).Google Scholar
  17. 17.
    G. Brual and M. Rothstein, Chem. Phys. Lett. 61, 167 (1979).Google Scholar
  18. 18.
    R. A. Aziz and M. J. Slaman, J. Chem. Phys. 92, 1030 (1990).Google Scholar
  19. 19.
    J. M. Peek, J. Chem. Phys. 43, 3004 (1965).Google Scholar
  20. 20.
    P. J. Kuntz and A. C. Roach, J. Chem. Soc. Faraday Trans. II 68, 259 (1972).Google Scholar
  21. 21.
    V. A. Belov, High Temp. 5, 31 (1967).Google Scholar
  22. 22.
    J. Aubreton, C. Bonnefoi, and J. M. Mexmain, Rev. Phys. Appl. 21, 365 (1986).Google Scholar
  23. 23.
    D. W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966).Google Scholar
  24. 24.
    A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990).Google Scholar
  25. 25.
    A. V. Phelps, J. Phys. Chem. Ref. Data 21, 883 (1992).Google Scholar
  26. 26.
    J. Stärck and W. Meyer, Chem. Phys. 176, 83 (1993).Google Scholar
  27. 27.
    E. A. Mason and J. T. Vanderslice, J. Chem. Phys. 28, 1070 (1958).Google Scholar
  28. 28.
    M. Capitelli, J. Phys. Colloq. 38, C3–227 (1977).Google Scholar
  29. 29.
    A. Dalgarno, Phil. Trans. Roy. Soc. London 250, 426 (1958).Google Scholar
  30. 30.
    Y. Itikawa, Atomic Data Nucl. Data Tables 14, 1 (1974).Google Scholar
  31. 31.
    Y. Itikawa, Atomic Data Nucl. Data Tables 21, 69 (1978).Google Scholar
  32. 32.
    R. W. Crompton, D. K. Gibson, and A. I. McIntosh, Aust. J. Phys. 22, 715 (1969).Google Scholar
  33. 33.
    S. K. Srivastava, A. Chutjian, and S. Trajmar, J. Chem. Phys. 63, 2659 (1975).Google Scholar
  34. 34.
    H. B. Milloy, R. W. Crompton, J. A. Rees, and A. G. Robertson, Aust. J. Phys. 30, 61 (1977).Google Scholar
  35. 35.
    L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 (1964).Google Scholar
  36. 36.
    E. A. Mason, R. J. Munn, and F. J. Smith, Phys. Fluids 10, 1827 (1967).Google Scholar
  37. 37.
    R. S. Devoto, Phys. Fluids 16, 616 (1973).Google Scholar
  38. 38.
    R. H. Williams and H. DeWitt, Phys. Fluids 12, 2326 (1968).Google Scholar
  39. 39.
    M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Vol. 1. New York: Plenum Press (1994).Google Scholar
  40. 40.
    B. Pateyron, M.-F. Elchinger, G. Delluc, and P. Fauchais, Plasma Chem. Plasma Process. 12, 421 (1992).Google Scholar
  41. 41.
    J. M. Baronnet, G. Debbagh-Nour, J. Lesinski, and E. Meillot, in Proceedings of the 7th International Symposium on Plasma Chemistry, Eindhoven, 1985, Vol. 1, C. J. Timmermans, ed. (1985), p. 836.Google Scholar
  42. 42.
    M. Capitelli, C. Gorse, and P. Fauchais, J. Chim. Phys. 73, 755 (1976).Google Scholar
  43. 43.
    R. S. Devoto, J. Plasma Phys. 2, 617 (1968).Google Scholar
  44. 44.
    P. Kovitya, IEEE Trans. Plasma Sci. 13, 587 (1985).Google Scholar
  45. 45.
    J. T. Vanderslice, S. Weissman, E. A. Mason, and R. J. Fallon, Phys. Fluids 5, 155 (1962).Google Scholar
  46. 46.
    D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. A 246, 215 (1953).Google Scholar
  47. 47.
    M. Capitelli, C. Gorse, and P. Fauchais, J. Phys. (Paris) 38, 653 (1977).Google Scholar
  48. 48.
    K. Behringer, W. Kollmar, and J. Mentel, Z. Phys. 215, 127 (1968).Google Scholar
  49. 49.
    S. Popovi? and N. Konjevi?, Z. Naturforsch. 31a, 1042 (1976).Google Scholar
  50. 50.
    H. Motschmann, Z. Phys. 191, 10 (1966).Google Scholar
  51. 51.
    J. C. Morris, R. P. Rudis, R. Krey, R. Garrison, and J. M. Yos, AVCO Report AVS SD-04140670-RR (1967).Google Scholar
  52. 52.
    U. Plantikow and S. Steinberger, Z. Phys. 231, 109 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • A. B. Murphy
    • 1
  1. 1.CSIRO Telecommunications and Industrial PhysicsLindfieldAustralia

Personalised recommendations