Glycoconjugate Journal

, Volume 16, Issue 7, pp 337–350

Combinatorial PCR approach to homology-based cloning: Cloning and expression of mouse and human GM3-synthase

  • Dmitri Kapitonov
  • Erhard Bieberich
  • Robert K. Yu


GM3-synthase, also known as sialyltransferase I (ST-I), catalyzes the transfer of a sialic acid residue from CMP-sialic acid onto lactosylceramide to form ganglioside GM3. In order to clone this enzyme, as well as other sialyltransferases, we developed an approach that we termed combinatorial PCR. In this approach, degenerate primers were designed on the basis of conserved sequence motifs of the ST3 family of sialyltransferases (STs). The nucleotide sequence of the primers was varied to cover all amino acid variations occurring in each motif. In addition, in some primers the sequence was varied to cover possible homologous substitutions that are absent in the available motifs. A panel of cDNA from 12 mouse and 8 human tissues was used to enable cloning of tissue- and stage-specific sialyltransferases. Using this approach, the fragments of 11 new putative sialyltransferases were isolated and sequenced so far. Analysis of the expression pattern of a particular sialyltransferase across the panel of cDNA from the different tissues provided information about the tissue specificity of ST expression. We chose two new ubiquitously expressed human and mouse STs to clone full-length copies and to assay for GM3-synthase activity. One of the STs, which exhibited the highest homology to ST3 Gal III, showed activity toward lactosylceramide (LacCer) and was termed ST3 Gal V according to the suggested nomenclature [1]. The other ubiquitously expressed sialyltransferase was termed ST3Gal VI. All isolated sialyltransferases were screened for alternatively spliced forms (ASF). Such forms were found for both human ST3Gal V and ST3Gal VI in human fetal brain cDNA library. The detailed cloning strategy, functional assay, and full length cDNA and protein sequences of GM3 synthase (ST3Gal V, or ST-I) are presented.

PCR GM3-synthase sialyltransferase molecular cloning of glycosyltransferases cDNA ST, sialyltransferase ST-I, CMP-NeuAc:lactosylceramide α2-3 sialyltransferase ST3, a family of sialyltransferases that transfers a sialic acid residue from CMP-sialic acid to the third carbon of a sugar acceptor molecule, forming an α2-3 bond LacCer, lactosylceramide or Galβ1-4Glcβ1-1′Cer Gg3, GalNAcβ1-4Galβ1-4Glcβ1-1′Cer GM3, NeuAcα2-3Galβ1-4Glcβ1-1′Cer GM1, Galβ1-3GalNAcβ1-4Gal(3-2α NeuAc)β1-4Glcβ1-1′Cer GD1a, NeuAcα2-3Galβ1-3GalNAcβ1-4Gal(3-2α NeuAc)β1-4Glcβ1-1′Cer ASF, alternatively spliced form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsuji S, Datta AK, Paulson JC (1996) [letter]. Glycobiology 6: v–vii.Google Scholar
  2. 2.
    Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) J Biol Chem 259: 6818–25.Google Scholar
  3. 3.
    Bremer EG, Schlessinger J, Hakomori S (1986) J Biol Chem 261: 2434–40.Google Scholar
  4. 4.
    Nojiri H, Takaku F, Ohta M, Miura Y, Saito M (1985) Cancer Res 45: 6100–106.Google Scholar
  5. 5.
    Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Proc Natl Acad Sci USA 83: 782–86.Google Scholar
  6. 6.
    Nojiri H, Kitagawa S, Nakamura M, Kirito K, Enomoto Y, Saito M. (1988) J Biol Chem 263: 7443–46.Google Scholar
  7. 7.
    Yada Y, Okano Y, Nozawa Y (1991) Biochem J 279: 665–70.Google Scholar
  8. 8.
    Rahmann H, Rosner H, Kortje KH, Beitinger H, Seybold V (1994) Brain Res 101: 127–45.Google Scholar
  9. 9.
    Ferrari G, Greene LA (1998) Ann NY Acad Sci 845: 263–73.Google Scholar
  10. 10.
    Hakomori S (1990) J Biol Chem 265: 18713–16.Google Scholar
  11. 11.
    Hakomori S (1997) Sphingolipid-mediated Signal Transduction. R.G.Landes Company and Chapman & Hall.Google Scholar
  12. 12.
    Hakomori S, Igarashi Y (1995) J Biochem (Tokyo) 118: 1091–103.Google Scholar
  13. 13.
    Hynds DL, Burry RW, Yates AJ (1997) Neurosci Res 47: 617–25.Google Scholar
  14. 14.
    Katoh N (1995) Toxicology 104: 73–81.Google Scholar
  15. 15.
    Yates AJ, Rampersaud A (1998) Ann NY Acad Sci 845: 57–71.Google Scholar
  16. 16.
    Suarez Pestana E, Greiser U, Sanchez B, Fernandez LE, Lage A, Perez R, Bohmer FD (1997) Br J Cancer 75: 213–20.Google Scholar
  17. 17.
    Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ (1985) J Neurochem 44: 1229–34.Google Scholar
  18. 18.
    Kreutter D, Kim JY, Goldenring JR, Rasmussen H, Ukomadu C, DeLorenzo RJ, Yu R K (1987) J Biol Chem 262: 1633–37.Google Scholar
  19. 19.
    Kim JY, Goldenring JR, DeLorenzo RJ, Yu RK (1986) J Neurosci Res 15: 159–66.Google Scholar
  20. 20.
    Matecki A, Stopa M, Was A, Pawelczyk T (1997) Int J Biochem Cell Biol 29: 815–28.Google Scholar
  21. 21.
    Yang FY, Wang LH, Yang XY, Tsui ZC, Tu YP (1997) Biophys Chem 68: 137–46.Google Scholar
  22. 22.
    Misasi R, Sorice M, Garofalo T, Griggi T, Campana W, Giammatteo M, Pavan A, Hiraiwa M, Pontieri M, O'Brien J (1998) J Neurochem 71: 2313–21.Google Scholar
  23. 23.
    Hakomori S, Yamamura S, Handa AK (1998) Ann NY Acad Sci 845: 1–10.Google Scholar
  24. 24.
    Kojima N, Hakomori S (1991) J Biol Chem 266: 17552–58.Google Scholar
  25. 25.
    Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S (1992) J Biol Chem 267: 17264–70.Google Scholar
  26. 26.
    Hammache D, Yahi N, Pieroni G, Ariasi F, Tamalet C, Fantini J (1998) Biochem Biophys Res Commun 246: 117–22.Google Scholar
  27. 27.
    Hammache D, Pieroni G, Yahi N, Delezay O, Koch N, Lafont H, Tamalet C, Fantini J (1998) J Biol Chem 273: 7967–71.Google Scholar
  28. 28.
    Paulson JC, Beranek WE, Hill RL (1977) J Biol Chem 252: 2356–62.Google Scholar
  29. 29.
    Gillespie W, Kelm S, Paulson JC (1992) J Biol Chem 267: 21004–10.Google Scholar
  30. 30.
    Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994) Proc Natl Acad Sci USA 91: 10455–59.Google Scholar
  31. 31.
    Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M (1993) J Biol Chem 268: 22782–87.Google Scholar
  32. 32.
    Kim YJ, Kim KS, Do S, Kim CH, Kim SK, Lee YC (1997) Biochem Biophys Res Commun 235: 327–30.Google Scholar
  33. 33.
    Nakayama J, Fukuda MN, Hirabayashi Y, Kanamori A, Sasaki K, Nishi T, Fukuda M (1996) J Biol Chem 271: 3684–91.Google Scholar
  34. 34.
    Lee YC, Kurosawa N, Hamamoto T, Nakaoka T, Tsuji S (1993) Eur J Biochem 216: 377–85.Google Scholar
  35. 35.
    Kapitonov D, Yu RK (1997) [dissertation] Medical College of Virginia of Virginia Commonwealth University, RichmondGoogle Scholar
  36. 36.
    Gu X, Preuss U, Gu T, Yu RK (1995) J Neurochem 64: 2295–302.Google Scholar
  37. 37.
    Sipos L, von Heijne G (1993) Eur J Biochem 213: 1333–40.Google Scholar
  38. 38.
    Nakashima H, Nishikawa K (1992) FEBS Lett 303: 141–46.Google Scholar
  39. 39.
    Hartmann E, Rapoport TA, Lodish HF (1989) Proc Natl Acad Sci USA 86: 5786–90.Google Scholar
  40. 40.
    Nigam SK, Blobel G (1989) J Biol Chem 264: 16927–32.Google Scholar
  41. 41.
    Ou WJ, Thomas DY, Bell AW, Bergeron JJ. (1992) J Biol Chem 267: 23789–96.Google Scholar
  42. 42.
    Sfeir C, Veis A (1995) J Bone Miner Res 10: 607–15.Google Scholar
  43. 43.
    Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M (1998) J Biol Chem 273: 31652–55Google Scholar
  44. 44.
    Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S (1998) Biochem Biophys Res Commun 253: 170–75.Google Scholar
  45. 45.
    Kapitonov D, Yu RK (1999) Glycobiology (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dmitri Kapitonov
    • 1
  • Erhard Bieberich
    • 1
  • Robert K. Yu
    • 1
  1. 1.Department of Biochemistry and Molecular Biophysics, Medical College of VirginiaVirginia Commonwealth UniversityRichmond

Personalised recommendations