Risk Analysis

, Volume 19, Issue 6, pp 1091–1100 | Cite as

Comparison of Six Dose-Response Models for Use with Food-Borne Pathogens

  • David L. Holcomb
  • Mary A. Smith
  • Glenn O. Ware
  • Yen-Con Hung
  • Robert E. Brackett
  • Michael P. Doyle


Food-related illness in the United States is estimated to affect over six million people per year and cost the economy several billion dollars. These illnesses and costs could be reduced if minimum infectious doses were established and used as the basis of regulations and monitoring. However, standard methodologies for dose-response assessment are not yet formulated for microbial risk assessment. The objective of this study was to compare dose-response models for food-borne pathogens and determine which models were most appropriate for a range of pathogens. The statistical models proposed in the literature and chosen for comparison purposes were log-normal, log-logistic, exponential, β-Poisson and Weibull-Gamma. These were fit to four data sets also taken from published literature, Shigella flexneri, Shigella dysenteriae,Campylobacter jejuni, and Salmonella typhosa, using the method of maximum likelihood. The Weibull-gamma, the only model with three parameters, was also the only model capable of fitting all the data sets examined using the maximum likelihood estimation for comparisons. Infectious doses were also calculated using each model. Within any given data set, the infectious dose estimated to affect one percent of the population ranged from one order of magnitude to as much as nine orders of magnitude, illustrating the differences in extrapolation of the dose response models. More data are needed to compare models and examine extrapolation from high to low doses for food-borne pathogens.

dose-response models food-borne pathogens risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Report to the President (1997). Food-Borne Illness: A Signifi-cant Public Health Problem. Participation of CAST, FDA, USDA, EPA and the CDC. WWW Address: Google Scholar
  2. 2.
    R. L. Buchanan, National Advisory Committee on Microbiological Criteria for Foods, ''Principles of Risk Assessment for Illnesses Caused by Foodborne Biological Agents,'' J.Food Protection 60(11), 1417–1419 (1997).Google Scholar
  3. 3.
    E. C. D. Todd and J. Harwig. ''Microbial Risk Analysis of Food in Canada,'' J.Food Protection, S,10–18 (1996).Google Scholar
  4. 4.
    S. Notermans and M. Bergdorff. ''A Global Perspective of Foodborne Disease,'' J.Food Protection 60(11), 1395–1399 (1997).Google Scholar
  5. 5.
    National Research Council (NRC), Risk Assessment in the Federal Government: Managing the Process (National Academy Press, Washington, DC, 1983).Google Scholar
  6. 6.
    J. M. Farber, W. H. Ross, and J. Harwig, ''Health Risk Assessment of Listeria monocytogenes in Canada,'' Int.J.Food Microbiol. 30, 145–154 (1996).PubMedGoogle Scholar
  7. 7.
    J. B. Rose, C. N. Haas, and S. Regli, ''Risk Assessment and Control of Waterborne Giardiasis,'' Am.J.Public Health 81(6), 709–713 (1991).PubMedGoogle Scholar
  8. 8.
    C. N. Haas, C. S. Crockett, J. B. Rose, C. P. Gerba, and A. M. Fazil, ''Assessing the Risk Posed by Oocysts in Drinking Water,'' J.Am.Water Works Assoc. 88(9), 131–136 (1996).Google Scholar
  9. 9.
    S. Regli, J. B. Rose, C. N. Haas, and C. P. Gerba, ''Modeling the Risk from Giardia and Viruses in Drinking Water,'' J.Am.Water Works Assoc. 83(11), 76–84 (1991).Google Scholar
  10. 10.
    M. H. Cassin, A. M. Lammerding, E. C. D. Todd, W. Ross, and R. S. McColl, ''Quantitative Risk Assessment for Escherichia coli 0157:H7 in Ground Beef Hamburgers,'' Int.J.Food Microbiol. 41, 21–24, (1998).PubMedGoogle Scholar
  11. 11.
    H. M. Marks, M. E. Coleman, C. T. J. Lin, and T. Roberts, ''Topics in Microbial Risk Assessment. Dynamic Flow Tree Process,'' Risk Anal. 18(3), 309–328 (1998).PubMedGoogle Scholar
  12. 12.
    R. C. Whiting and R. L. Buchanan, ''Development of aQuantitative Risk Assessment Model for Salmonella enteritidis in Pasteurized Liquid Eggs,'' Int.J.Food Microbiol. 36, 111–125 (1997).PubMedGoogle Scholar
  13. 13.
    C. N. Haas, ''Estimation of Risk Due to Low Doses of Microorganisms: A Comparison of Alternative Methodologies,'' Am.J.Epidemiol. 118(4), 573–582 (1983).PubMedGoogle Scholar
  14. 14.
    D. W. Gaylor, ''Dose-Response Modeling,'' in C. A. Kimmel and J. Buelke-Sam (eds.), Development Toxicology, 2nd ed. (Raven Press, Ltd. New York, 1994), pp. 363–375.Google Scholar
  15. 15.
    C. S. Crockett, C. N. Haas, A. Fazil, J. B. Rose, and C. P. Gerba, ''Prevalence of Shigellosis in the U. S. Consistency with Dose-Response Information,'' Int.J.Food Microbiol. 30(1–2), 87–99 (1996).PubMedGoogle Scholar
  16. 16.
    C. N. Haas, J. B. Rose, C. P. Gerba, and S. Regli, ''Risk Assessment of Virus in Drinking Water,'' Risk Anal. 13(5), 545–552 (1993).PubMedGoogle Scholar
  17. 17.
    M. M. Levine, H. L. Dupont, S. B. Formal, R. B. Hornick, A. Takeuchi, E. J. Gangarosa, M. J. Snyder, and J. P. Libonati, ''Pathogenesis of Shigella Dysenteriae 1 (Shiga) Dysentery,'' J.Infect.Dis. 127, 261–269 (1973). 1PubMedGoogle Scholar
  18. 8.
    H. L. Dupont, R. B. Hornick, A. T. Dawkins, M. J. Snyder, and S. B. Formal, ''The Response of Man to Virulent Shigella flexneri IIa.,'' J.Infect.Dis. 119, 296–299 (1969).PubMedGoogle Scholar
  19. 19.
    H. L. Dupont, R. B. Hornick, M. J. Snyder, J. P. Libonati, S. B. Formal, and E. J. Gangarosa, ''Immunity in Shigellosis. II. Protection Induced by Oral Live Vaccine or Primary Infection,'' J.Infect.Dis. 125, 12–16 (1972).PubMedGoogle Scholar
  20. 20.
    R. B. Hornick, S. E. Greisman, T. E. Woodward, H. L. DuPont, A. T. Dawkins, and M. J. Snyder, ''Typhoid Fever Pathogenesis and Immunological Control,'' New Eng.J.Med. 283, 686–691 (1970).PubMedGoogle Scholar
  21. 21.
    G. J. Medema, P. F. M. Teunis, A. H. Havelaar, and C. N. Haas, ''Assessment of the Dose-Response Relationship of Campylobacter jejuni,'' Int.J.Food Microbiol. 30, 101–111 (1996).PubMedGoogle Scholar
  22. 22.
    R. E. Black, M. M. Levine, M. L. Clements, T. P. Highes, and M. J. Blaser, ''Experimental Campylobacter jejuni Infection in Humans,'' J.Infect.Dis. 157, 472–479 (1988).PubMedGoogle Scholar
  23. 23.
    F. J. Richards, ''A Flexible Growth Model for Empirical Use,'' J.Exptl.Bot. 10(29), 290–300 (1959).Google Scholar
  24. 24.
    W. A. Furumoto and R. Mickey, ''A Mathematical Model for the Infectivity-Dilution Curve of Tobacco Mosaic Virus: Theoretical Considerations,'' Virology 32, 216–223 (1967).PubMedGoogle Scholar
  25. 25.
    SYSTAT v.7.0 (SPSS Inc., Chicago, IL, USA, 1997).Google Scholar
  26. 26.
    P. McCullagh and J. A. Nelder, Generalized Linear Models, (Chapman and Hall, London, England, Second Edition 1989), pp. 98–148.Google Scholar
  27. 27.
    SAS/STAT User's Guide Version 6.0, 4th ed (SAS Institute Inc., Cary, NC, USA, 1990), ch. 35.Google Scholar
  28. 28.
    V. T. Covello and M. W. M erkhofer, Risk Assessment Methods (Plenum Press, New York, NY, 1993), pp. 151–166.Google Scholar
  29. 29.
    L. von Bertalanffy, ''Quantitative Laws in Metabolism and Growth,'' Quart.Rev.Biol. 32, 217–231 (1957).PubMedGoogle Scholar

Copyright information

© Society for Risk Analysis 1999

Authors and Affiliations

  • David L. Holcomb
    • 1
  • Mary A. Smith
    • 2
    • 3
  • Glenn O. Ware
    • 4
  • Yen-Con Hung
    • 3
  • Robert E. Brackett
    • 3
  • Michael P. Doyle
    • 3
  1. 1.Environmental Health ScienceUniversity of GeorgiaAthens
  2. 2.Environmental Health Science, University of GeorgiaAthens
  3. 3.Center for Food Safety and Quality EnhancementUniversity of GeorgiaGriffin
  4. 4.Experimental StatisticsCollege of Agricultural and Environmental Sciences, University of GeorgiaAthens

Personalised recommendations