Advertisement

Photosynthetica

, 36:51 | Cite as

Protective Action of Abscisic Acid Against the Inhibition of Photosynthesis of Barley Leaves by Bisulphite

  • C.N. N'Soukpoè-Kossi
  • A.G. Ivanov
  • K. Veeranjaneyulu
  • R.M. Leblanc
Article

Abstract

The inhibition of photosynthetic activity by bisulphite was studied in intact leaves of abscisic acid (ABA)-treated and non-treated (control) barley plants. ABA inhibited the photosynthetic process as evidenced by lower values of chlorophyll fluorescence kinetic parameters Fv/Fm (photosystem 2 activity) and Rfd (vitality index, related to the whole photosynthetic activity) compared with ABA-non-treated plants. After bisulphite treatment, the extent of inhibition was smaller in ABA-treated plants than in the control ones indicating a protective effect of ABA. The protective action sites of ABA were the QA reduction and the Calvin cycle.

chlorophyll fluorescence Hordeum vulgare photoacoustic spectroscopy photosystem 2 

References

  1. Alscher, R., Franz, M., Jerke, C.W.: Sulfur dioxide and chloroplast metabolism.-In: Saunders, J.A., Kosak-Channing, L., Conn, E.E. (ed.): Phytochemical Effects of Environmental Compounds. Pp. 1-28. Plenum Publishing Corp., New York 1987.Google Scholar
  2. Asada, K., Kitoh, S., Denra, R., Kasai, Z.: Effect of α-hydroxyl-sulfonates on photochemical reactions of spinach chloroplasts and participation of glyoxylate in photophosphorylation.-Plant Cell Physiol. 6: 615-629, 1965.Google Scholar
  3. Bauer, R., Huber, W., Sankhla, N.: Effects of abscisic acid on photosynthesis in Lemna minor.-Z. Pflanzenphysiol. 77: 237-246, 1976.Google Scholar
  4. Beauregard, M., Popovic, R.: Artificial inhibitory effects of sulfite on photosystem II activity measured by oxygen evolution in chloroplasts.-Photosynth. Res. 14: 89-94, 1987.CrossRefGoogle Scholar
  5. Bélanger, R., Paquette, A., N'soukpoè-Kossi, C.N., Leblanc, R.M.: New portable photoacoustic and fluorescence photometer for field measurement of photosynthesis.-Rev. Sci. Instrum. 64: 1175-1181, 1993.CrossRefGoogle Scholar
  6. Cerović, Z.G., Kalezić, R., Plesničar, M.: The role of photophosphorylation in SO2 and SO3 2− inhibition of photosynthesis in isolated chloroplasts.-Planta 156: 249-254, 1982.CrossRefGoogle Scholar
  7. Chen, H.H., Li, P.H., Brenner, M.L.: Involvement of abscisic acid in potato cold acclimation.-Plant Physiol. 71: 362-365, 1983.PubMedCrossRefGoogle Scholar
  8. Chen, T.H.H., Gusta, L.V.: Abscisic acid-induced freezing resistance in cultured plant cells.-Plant Physiol. 73: 71-75, 1983.PubMedCrossRefGoogle Scholar
  9. Churchill, G.C., Ewan, B., Reaney, M.J.T., Abrams, S.R., Gusta, L.V.: Structure-activity relationships of abscisic acid analogs based on the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell cultures.-Plant Physiol. 100: 2024-2029, 1992.PubMedCrossRefGoogle Scholar
  10. Cornic, G., Miginiac, E.: Non stomatal inhibition of net CO2 uptake by (±) abscisic acid in Pharbitis nil.-Plant Physiol. 73: 529-533, 1983.PubMedCrossRefGoogle Scholar
  11. Dann, M.S., Pell, E.J.: Decline in activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage.-Plant Physiol. 91: 427-432, 1989.PubMedCrossRefGoogle Scholar
  12. Darrall, N.M.: The effect of air pollutants on physiological processes in plants.-Plant Cell Environ. 12: 1-30, 1989.CrossRefGoogle Scholar
  13. Dörffling, K., Petersen, W., Sprecher, E., Urbasch, I., Hanssen, H.-P.: Abscisic acid in phytopathogenic fungi of the genera Botrytis, Ceratocystis, Fusarium, and Rhizoctonia.-Z. Naturforsch. 39c: 683-684, 1984.Google Scholar
  14. Downton, W.J.S., Loveys, B.R., Grant, W.J.R.: Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid.-New Phytol. 108: 263-266, 1988.CrossRefGoogle Scholar
  15. Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigan, J., Puigdomenech, P., Pages, M.A.: A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein.-Nature 334: 262-264, 1988.PubMedCrossRefGoogle Scholar
  16. Hartung, W.: The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta.-Plant Cell Environ. 6: 427-428, 1983.CrossRefGoogle Scholar
  17. Hong, B., Uknes, S.J., Ho, T.D.: Cloning and characterization of a cDNA encoding mRNA rapidly-induced by ABA in barley aleurone layer.-Plant mol. Biol. 11: 495-506, 1988.CrossRefGoogle Scholar
  18. Hornberg, C., Weiler, E.W.: High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells.-Nature 310: 321-324, 1984.CrossRefGoogle Scholar
  19. Hughes, M.A., Dunn, M.A., Pearce, R.S., White, A.J., Zhang, L.: An abscisic-acid-response, low temperature barley gene has homology with a maize phospholipid transfer protein.-Plant Cell Environ. 15: 861-865, 1992.CrossRefGoogle Scholar
  20. Ivanov, A.G., Kitcheva, M.I., Christov, A.M., Popova, L.P.: Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts.-Plant Physiol. 98: 1228-1232, 1992.PubMedCrossRefGoogle Scholar
  21. Kahn, T.L., Fender, S.E., Bray, E.A., O'Connell, M.A.: Characterization of expression of drougth-and abscisic acid-regulated tomato genes in the drought-resistant species Lycopersicon pennellii.-Plant Physiol. 103: 597-605, 1993.PubMedGoogle Scholar
  22. Kicheva, M.I., Ivanov, A.G.: A comparative analysis of the effects of in-vivo and in-vitro abscisic-acid treatment on the surface electrical properties of barley chloroplast membranes.-Planta 188: 232-237, 1992.CrossRefGoogle Scholar
  23. Krause, G.H., Briantais, J.-M., Vernotte, C.: Two mechanisms of reversible quenching in chloroplasts.-In: Akoyunoglou, G. (ed.): Photosynthesis. Vol. I. Pp. 575-584. Balaban Int. Sci. Serv., Philadelphia 1981.Google Scholar
  24. Krause, G.H., Vernotte, C., Briantais, J.-M.: Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution in two components.-Biochim. biophys. Acta 679: 116-124, 1982.CrossRefGoogle Scholar
  25. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.CrossRefGoogle Scholar
  26. Lalk, I., Dörffling, K.: Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties.-Physiol. Plant. 63: 287-292, 1985.CrossRefGoogle Scholar
  27. LaRosa, P.C., Handa, A.K., Hasegawa, P.M., Bressan, R.A.: Abscisic acid accelerates adaptation of cultured tobacco cells to salt.-Plant Physiol. 79: 138-142, 1985.PubMedCrossRefGoogle Scholar
  28. Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress condition in plants.-CRC crit. Rev. anal. Chem. 19: S29-S85, 1988.Google Scholar
  29. Marques, I.A., Anderson, L.E.: Effects of arsenite, sulfite, and sulfate on photosynthetic carbon metabolism in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts.-Plant Physiol. 82: 488-493, 1986.PubMedCrossRefGoogle Scholar
  30. Maslenkova, L.T., Zanev, Y., Popova, L.P.: Effect of abscisic acid on the photosynthetic oxygen evolution in barley chloroplasts.-Photosynth. Res. 21: 45-50, 1989.Google Scholar
  31. Milborrow, B.V.: Pathways to and from abscisic acid.-In: Addicott, T.F. (ed.): Abscisic Acid. Pp. 79-111. Praeger, New York 1980.Google Scholar
  32. Mohaparta, S.S., Poole, R.J., Dhindsa, R.S.: Detection of two polypeptides induced by abscisic acid and cold acclimation. Possible role in freezing tolerance.-Plant Cell Physiol. 29: 727-730, 1988a.Google Scholar
  33. Mohaparta, S.S., Poole, R.J., Dhindsa, R.S.: Alterations in membrane protein profile during cold treatment of alfalfa.-Plant Physiol. 86: 1005-1007, 1988b.CrossRefGoogle Scholar
  34. Moss, D.A., Bendall, D.S.: Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of actimycin.-Biochim. biophys. Acta 767: 389-395, 1984.CrossRefGoogle Scholar
  35. Mundy, J., Chua, N.H.: Abscisic acid and water stress induce the expression of a novel rice gene.-EMBO J. 7: 2279-2286, 1988.PubMedGoogle Scholar
  36. N'soukpoé-Kossi, C.N., Leblanc, R.M.: Application of photoacoustic spectroscopy in photosynthesis research.-J. mol. Struct. 217: 69-84, 1990.CrossRefGoogle Scholar
  37. N'soukpoé-Kossi, C.N., Veeranjaneyulu, K., Leblanc, R.M.: Sites of action of sulphite and bisulphite in the photosynthetic apparatus of sugar maple leaves as studied by photoacoustic and modulated fluorescence methods.-Plant Cell Environ. 17: 731-738, 1994.CrossRefGoogle Scholar
  38. Ooms, J.J.J., Lèon-Kloosterziel, K.M., Bartels, D., Koornneef, M., Karssen, C.M.: Acquisition of dessication tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants.-Plant Physiol. 102: 1185-1191, 1993.PubMedGoogle Scholar
  39. Orr, W., Keller, W.A., Singh, J.: Induction of freezing tolerance in an embryogenic cell suspension culture of Brassica napus by abscisic acid at room temperature.-J. Plant Physiol. 126: 23-32, 1986.Google Scholar
  40. Parthier, B.: Hormone-induced alterations in plant gene expression.-Biochem. Physiol. Pflanz. 185: 289-314, 1989.Google Scholar
  41. Pell, E.J., Enyedi, A., Eckardt, N., Landry, L.: Ozone-induced alterations in quantity and activity of Rubisco: implications for foliar senescence.-In: Reddy, C.C., Hamilton, G.A., Madyastha, K.M. (ed.): Proc. Int. Symp. Biol. Oxidation Systems. Pp. 389-403. Academic Press, San Diego 1990.Google Scholar
  42. Raschke, K., Hedrich, R.: Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves.-Planta 163: 105-118, 1985.CrossRefGoogle Scholar
  43. Reaney, M.J.T., Gusta, L.V.: Factors influencing the induction of freezing tolerance by abscisic acid in cell suspension cultures of Bromus inermis Leyss and Medicago sativa L.-Plant Physiol. 83: 423-427, 1987.PubMedCrossRefGoogle Scholar
  44. Robertson, A.J., Gusta, L.V.: Abscisic acid and low temperature induced polypeptide changes in alfalfa (Medicago sativa) cell suspension cultures.-Can. J. Bot. 64: 2758-2763, 1986.CrossRefGoogle Scholar
  45. Robertson, A.J., Gusta, L.V., Reaneej, M.J.J., Ishikawa, M.: Protein synthesis in bromegrass (Bromus inermis Leyss) cultured cells during the induction of from tolerance by abscisic acid or low temperature.-Plant Physiol. 84: 1331-1336, 1987.PubMedCrossRefGoogle Scholar
  46. Schmidt, W., Schreiber, U., Urbach, W.: SO2 injury in intact leaves, as detected by chlorophyll fluorescence.-Z. Naturforsch. 43c: 269-274, 1988.Google Scholar
  47. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986.CrossRefGoogle Scholar
  48. Singh, N.K., LaRosa, P.C., Handa, A.K., Hasegawa, P.M., Bresson, R.A.: Hormonal regulation of protein synthesis associated with salt tolerance in plant cells.-Proc. nat. Acad. Sci. USA 84: 739-743, 1987.PubMedCrossRefGoogle Scholar
  49. Tietz, A., Kasprik, W.: Identification of abscisic acid in a green alga.-Biochem. Physiol. Pflanz. 181: 269-274, 1986.Google Scholar
  50. Veeranjaneyulu, K., Charlebois, D., N'soukpoé-Kossi, C.N., Leblanc, R.M.: Sulfite inhibition of photochemical activity of intact pea leaves.-Photosynth. Res. 34: 271-278, 1992.CrossRefGoogle Scholar
  51. Ward D.A., Bunce, J.A.: Abscisic acid simultaneously decreases carboxylation efficiency and quantum yield in attached soybean leaves.-J. exp. Bot. 38: 1182-1192, 1987.CrossRefGoogle Scholar
  52. Xin, Z., Li, P.H.: Relationship between proline and abscisic acid in the induction of chilling tolerance in maize suspension-cultured cells.-Plant Physiol. 103: 607-613, 1993.PubMedGoogle Scholar
  53. Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 439-473, 1988.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C.N. N'Soukpoè-Kossi
    • 1
  • A.G. Ivanov
    • 2
  • K. Veeranjaneyulu
    • 1
  • R.M. Leblanc
    • 1
  1. 1.Département de Chimie-BiologieUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Department of Plant SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations