Cellular and Molecular Neurobiology

, Volume 20, Issue 3, pp 319–329

Gene Expression of Two Glutamate Receptor Subunits in Response to Repeated Stress Exposure in Rat Hippocampus

  • Marek Schwendt
  • Daniela Ježová
Article

Abstract

1. Glutamatergic mechanisms are thought to be involved in stress-induced alterations of brain function, especially in the hippocampus. We have hypothesized that repeated stress exposure may evoke changes of hippocampal glutamate receptors at the level of gene expression.

2. The study was designed to analyze the levels of mRNA coding for NMDAR1, the essential subunit of the N-methyl-D-aspartate (NMDA) receptor subtype, and for GluR1, an AMPA glutamate receptor subunit, after repeated immobilization stress in rat hippocampus. Toward this aim, we applied a competitive RT-PCR technique which allowed precise and reliable quantification of the transcripts.

3. We found that repeated immobilization stress for 7 days significantly increased GluR1 mRNA levels, by 27% (P < 0.01), as measured 24 hr after the last stress exposure. Levels of mRNA coding for NMDAR1 were slightly elevated, but the difference failed to be significant.

4. These results demonstrate selective changes in the gene expression of glutamate receptor subunits, which are likely to take part in the mechanisms leading to enhanced excitability and vulnerability of hippocampal neurons and to potential damage during repeated or chronic stress exposure.

competitive RT-PCR glutamate receptors hippocampus mRNA stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, K. M., Cheung, P. H., and Kelly, M. D. (1997). Rapid generation of homologous internal standards and evaluation of data for quantitation of messenger RNA by competitive polymerase chain reaction. J. Pharmacol. Toxicol. Methods 38:133-140.Google Scholar
  2. Bartanusz, V., Ježová, D, Bertini, L. T., Tilders, F. J. H., Aubry, J. M., and Kiss, J. Z. (1993). Stress-induced changes in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology 132:895-902.Google Scholar
  3. Bartanusz, V., Aubry, J. M., Pagliusi, S., Ježová, D., Baffi, J., and Kiss, J. Z. (1995). Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66:247-252.Google Scholar
  4. Bochet, P., Audinat, E., Lambolez, B., Crepel, F., Rossier, J., Iino, M., Tsuzuki, K., and Ozawa, S. (1994). Subunit composition at the single-cell level explains functional properties of a glutamategated channel. Neuron 12:383-388.Google Scholar
  5. Chomczynski, P., and Sacchi, R. (1987). Single-step method of RNA isolation by acid guanidine-isothicyanate-phenol-chlorophorm extraction. Anal. Biochem. 162:156-159.Google Scholar
  6. DeGoeij, D. C. E., Ježová, D., and Tilders, F. J. H. (1992). Repeated stress enhances vasopressin synthesis in corticotropin releasing factor neurons in the paraventricular nucleus. Brain Res. 577:165-168.Google Scholar
  7. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996). Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: Common adaptation to cross-sensitizing agents. J. Neurosci. 16:274-282.Google Scholar
  8. Foley, K. P., Leonard, M. W., and Engel, J. P. (1993). Quantitation of RNA using the polymerase chain reaction. Trends Genet. 9:380-385.Google Scholar
  9. Gaspary, H. L. (1998). AMPA receptors: Players in calcium-mediated neuronal injury? Neuroscientist 4:149-153.Google Scholar
  10. Gilliland, G., Perrin, S., Blanchard, K., and Franklin, B. (1990). Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87:2725-2729.Google Scholar
  11. Herman, J. P., and Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypothalamopituitary-adrenocortical axis. Trends Neurosci. 20:78-84.Google Scholar
  12. Ježová, D., Tokarev, D., and Rusnák, M. (1995). Endogenous excitatory amino acid are involved in stress-induced adrenocorticotropin and catecholamine release. Neuroendocrinology 62:326-332.Google Scholar
  13. Lowy, M. T., Gault, L., and Yamammoto, B. K. (1993). Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem. 61:1957-1960.Google Scholar
  14. Maren, S., Tocco, G., Standley, S., Baudry, M., and Thompson, R. F. (1993). Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo. Proc. Natl. Acad. Sci. USA 90:9654-9658.Google Scholar
  15. McEwen, B. S. (1998). Protective and damaging effects of stress mediators. N. Engl. J. Med. 338:171-179.Google Scholar
  16. McEwen, B. S., DeKloet, E. R., and Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system. Physiol. Rev. 66:1121-1188.Google Scholar
  17. McEwen, B. S., and Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Ann. N.Y. Acad. Sci. 821:271-284.Google Scholar
  18. Moghaddam, G. (1993). Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: Comparison to hippocampus and basal ganglia. J. Neurochem. 60:1650-1657.Google Scholar
  19. Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V. L., Cho, S., and Pulsinelli, W. A. (1992). Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA 89:10499-10503.Google Scholar
  20. Repčekova, D., and Mikulaj, L. (1977). Plasma testosterone of rats subjected to immobilization stress and/or HCG administration. Horm. Res. 8:51-57.Google Scholar
  21. Sapolsky, R. M., McEwen, B. S., and Rainbow, T. C. (1983). Quantitative autoradiography of [3H] corticosterone receptors in rat brain. Brain Res. 271:331-334.Google Scholar
  22. Tocco, G., Shors, T. J., Baudry, M., and Thompson, R. F. (1991). Selective increase of AMPA binding to the AMPA/quisqualate receptor in the hippocampus in response to acute stress. Brain Res. 559:168-171.Google Scholar
  23. Uno, H., Tarara, R., Else, J. G., Suleman, M. A., and Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9:1705-1711.Google Scholar
  24. Watanabe, Y., Gould, E., and McEwen, B. S. (1992a). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588:341-345.Google Scholar
  25. Watanabe, Y., Gould, E., Camero, H. A., Daniels, D. C., and McEwen, B. S. (1992b). Phenytoin prevents stress-and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2:431-435.Google Scholar
  26. Watanabe, Y., Weiland, N. G., and McEwen, B. S. (1995). Effects of adrenal steroid manipulations and repeated restraint stress on dymorphin mRNA levels and excitatory amino acid receptor binding in hippocampus. Brain Res. 680:217-225.Google Scholar
  27. Zamorano, P. L., Mahesh, V. B., and Brann, D. W. (1996). Quantitative RT-PCR for neuroendocrine studies. Neuroendocrinology 63:397-407.Google Scholar
  28. Zelena, D., Makara, G. B., and Ježová, D. (1999). Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor specific inhibition of prolactin and ACTH release. Neuroendocrinology 69:316-323.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Marek Schwendt
    • 1
  • Daniela Ježová
    • 1
  1. 1.Institute of Experimental EndocrinologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations