Transition Metal Chemistry

, Volume 25, Issue 5, pp 559–561 | Cite as

Molecular complexes of copper(I): Easy access to CuF(PPh3)3 · 2ROH (R = Me or Et)

  • Mihir K. Chaudhuri
  • Siddhartha S. Dhar
  • N. Vijayashree


Treatment of a CuSO4 · 5H2O solution with NH2OH · HCl and NaOH produces orange–yellow Cu2O, which on being reacted with Ph3P and aqueous HF (48%) in MeOH or EtOH yields CuF(PPh3)3 · 2ROH (R = Me or Et) in high yield. The volatile compounds have been characterised by spectroscopic techniques in addition to chemical analyses and solution electrical conductance measurements. Typically, CuF(PPh3)3 · 2MeOH appears to be stable up to 118 °C and loses 2 MeOH and 3 PPh3 between 118 and 274 °C yielding volatile ‘CuF’ at 274 °C.


Copper 5H2O Electrical Conductance Catalysis MeOH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.G. Spiro (Ed.), Copper Proteins, Wiley International, New York, 1981.Google Scholar
  2. 2.
    R. Lontie, Copper Proteins and Copper Enzymes, Vol. I & II, CRC Press, Boca Raton, FL, 1984.Google Scholar
  3. 3.
    K.D. Karlin and J. Zubieta (Ed.), Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Adenine Press, New York, 1986.Google Scholar
  4. 4.
    K.D. Karlin and J. Zubieta (Ed.), Biological and Inorganic Copper Chemistry, Adenine Press, New York, 1986.Google Scholar
  5. 5.
    H. Gampp and A.D. Zuberbuhler, Chimia, 32, 54 (1978).Google Scholar
  6. 6.
    A.E. Martell, Pure. Appl. Chem., 55, 25 (1983).Google Scholar
  7. 7.
    T.G. Spiro, Metal Activation of Dioxygen, Wiley Interscience, New York, 1980.Google Scholar
  8. 8.
    S. Sakaki, G. Kogoa and K. Ohkubo, Inorg. Chem., 25, 2330 (1986).Google Scholar
  9. 9.
    A. Edel, P.A. Marnst and J.P. Sauvage, Nouv. J. Chem., 8, 495 (1984).Google Scholar
  10. 10.
    D.R. McMillin, J.R. Kircho. and K.V. Goodwin, Coord. Chem. Rev., 64, 83 (1985).Google Scholar
  11. 11.
    R.D. Reiki, D.E. Stack and B.T. Dawson, J. Org. Chem., 58, 2483 (1993).Google Scholar
  12. 12.
    W. Mijs and C. de Jonge, Organic Synthesis by Metal Compounds, Plenum, New York, 8423, 1986.Google Scholar
  13. 13.
    B.H. Lipshutz and S. Sengupta, Org. React., 41, 135 (1992).Google Scholar
  14. 14.
    T. Tsuda, T. Hashimoto and T. Saegusa, J. Am. Chem. Soc., 94, 658 (1972).Google Scholar
  15. 15.
    M.E. Gross, J. Electrochem. Soc., 138, 2422 (1991).Google Scholar
  16. 16.
    T. Khodas and M. Hampden-Smith, The Chemistry of Metals CVD, VCH, Weinheim, 1994.Google Scholar
  17. 17.
    P.M. Jeffries, L.H. Dubois and G.S. Girolami, Chem. Mater., 4, 1169 (1992).Google Scholar
  18. 18.
    D.J. Gulliver, W. Levason and M. Webster, Inorg. Chim. Acta, 52, 153 (1981).Google Scholar
  19. 19.
    F.H. Jardine, L. Rule and A.G. Vohra, J. Chem. Soc. (A), 238 (1970).Google Scholar
  20. 20.
    M.K. Chaudhuri, S.K. Chettri, P.C. Paul and P. Srinivas, J. Fluorine Chem., 78, 131 (1996).Google Scholar
  21. 21.
    B.R. Teo and D.M. Barnes, Inorg. Nucl. Chem. Lett., 12, 681 (1975).Google Scholar
  22. 22.
    G. Costa, E. Reisenhofer and L. Stefani, J. Inorg. Nucl. Chem., 27, 2581 (1965).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Mihir K. Chaudhuri
    • 1
  • Siddhartha S. Dhar
    • 1
  • N. Vijayashree
    • 1
  1. 1.Department of ChemistryIndia Institute of TechnologyGuwahatiIndia

Personalised recommendations