GeoJournal

, Volume 47, Issue 1–2, pp 3–276 | Cite as

Reconstruction of an approximately complete Quaternary Tibetan inland glaciation between the Mt. Everest- and Cho Oyu Massifs and the Aksai Chin. A new glaciogeomorphological SE–NW diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle

  • Matthias Kuhle
Article

Abstract

Studies were done on new geomorphological and quaternary-geological profiles through representative reliefs of Tibet from the Central Himalaya as far as the Kuenlun. Thus, further detailed investigations on the prehistoric glaciation could be carried out. Youngest historical to neoglacial ice margin positions could be recorded. Their mapping took place in a downward direction from the modern glacier margins. They confirm snow line (ELA) depressions from decametres up to ca. 100–250 m. At distances of several kilometres to many decakilometres (depending on the relief) from the modern glaciers, névé shields and perennial snow fields, end moraines and later just remnants of lateral moraines and kame complexes of the Late Glacial (ca. Stadia IV-II) have been localized in an increasing disrupted succession and samples have been taken. The recorded, inter- and extrapolated lowest ice margin positions allowed the reconstruction of accompanying depressions of the snow line which, due to the altitude of the Tibetan plateau plains, attained a maximum of 400–700 m. Accordingly, the early Late Glacial (Stadia I to II) and High Glacial glacier traces (Riss or pre-LGM and Würm or LGM = Stadia −I and/or 0) occurred over a horizontal distance of 1620 km across the plateau with an average height of 4700 m asl without showing the key forms of ice margin positions. From the profiles introduced here, running from Mt. Everest/Cho Oyu (Central Himalaya) in the SE via Gertse (Kaitse; Central Tibet) as far as the Lingzi Thang and Aksai Chin and from there into the Kuenlun, as well as from a parallel section of the Gurla Mandhata (central S Tibet) to the currently very arid Nako Tso, located centrally in the W, sediment samples have been analysed which provide evidence for a ground moraine genesis. Thus, the macroscopic field observations are confirmed. Only the relatively small basin of Shiquanha (Ali) – like the Indus valley chamber of Leh – may have been free of ice during the High Glacial (LGM). Forms of glacial horns, as well as roches moutonnées and large, several metres-high round-polished mountain ridges with slight debris covers, flank polishings, abraded mountain spurs at intermediate valley ridges and high-lying erratics document the widespread ice cover. Important ice thicknesses of at least 1300–1400 m have been recognized by means of transfluences. Especially by and in the Nako Tso (lake) the limnic undercutting of roches moutonnées provides evidence only of a postglacial filling into a primary glacial relief. The glacial ice cover (with the LGM at the end) testified here for a further area of Tibet, is the foundation of the relief-specific hypothesis on the development of the Ice Ages, based on the global radiation geometry: accordingly, the last great geological event, the early Pleistocene plate-tectonically induced uplift of Tibet above the snow line, has brought about a glaciation which, owing to its high albedo, reflected the subtropical radiation energy into space, so that it could not be exploited for the heating of the atmosphere. This may have triggered the Ice Ages. The repeated interglacial warming-up is to be reduced to the positive radiation anomalies by the variations of the parameters of the earth's orbit – which take place rhythmically – and the overlying glacio-isostatic lowering of Tibet and the other inland ice areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews J.T., 1970: A geomorphological study of post-glacial uplift with particular reference to Arctic Canada. Canadian Journal of Earth Science, 7(2): 703-715.CrossRefGoogle Scholar
  2. An Zhongyuan, 1980: Formation and evolution of permafrost ice mound on Qing Zhang Plateau. Journal of Glaciology, 2(2): 25-30.Google Scholar
  3. Bielefeld B., 1993: Untersuchungen zum albedobedingten Energieverlust der letzten Eiszeit. Unveröffentl. Manuscript.Google Scholar
  4. Bielefeld B., 1997: Investigation into albedo-controlled energy loss during the last glaciation. In: Kuhle, M. (ed.), GeoJournal, 42(2–3), 329-336 (Tibet and High Asia. Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research) IV).Google Scholar
  5. Bussemer S., 1994: Gemorphologische und bodenkundliche Untersuchungen an periglazialen Deckserien des mittleren und östlichen Barnim. Berliner Geogr. Arbeiten, 80.Google Scholar
  6. Chen J.Y., 1988: Recent development of Geodesy in China. AVN-International Edition, 5: 26-32.Google Scholar
  7. Croll J., 1875: Climate and time in their geological relations. London.Google Scholar
  8. Damm B., 1997: Vorzeitliche und aktuelle Vergletscherung des Markhatales und der nördlichen Nimaling-Berge, Ladakh (Nordindien). Zeitschrift für Gletscherkunde und Glazialgeologie, 33(2): 133-148.Google Scholar
  9. De Pison E.M., Lopez J. and Nicolas, P., 1988: Observaciones Geomorfologicas en la Vertiente Tibetana Del Everest. Expedición espanola al Qomolangma, 1986-UAM; Universidad Autonoma de Madrid, Madrid: 1-159.Google Scholar
  10. De Terra H., 1932: Geologische Forschungen im westlichen K'unlun und Karakorum Himalaya. Wissenschaftliche Ergebnisse der Dr. Trinklerschen Zentralasien Expedition. Vol. 2, Berlin.Google Scholar
  11. De Terra H., 1934: Physiogeographic results of a recent survey in Little Tibet. Geographical Review, 24, Karte 1:506 880 (Rupschu-Panggong-Tschangtschenmo) von A. Gul Khan: 12-41.CrossRefGoogle Scholar
  12. Dreimanis A., 1939: Eine neue Methode der quantitativen Geschiebeforschung. Zeitschrift für Geschiebeforschung, 15.Google Scholar
  13. Dreimanis A., 1979: Selection of genetically significant parameters for investigation of tills. In: Schlüchter C. (ed.), Moraines and Varves, Rotterdam: 167-177.Google Scholar
  14. Dreimanis A., 1982: INQUA-Commission on Genesis and Lithology of Quaternary Deposits. Work Group (1) — Genetic classification of tills and criteria for their differentation. In: Progress report on activities 1977–1982 and definitions of glacigenic terms. ETH, Zürich: 12-31.Google Scholar
  15. Dreimanis A. and Vagners U.J., 1971: Bimodal distribution of rock and mineral fragments in basal tills. In: Goldthwaite R.P. (ed.), Till, a Symposium. Ohio State University Press: 237-250.Google Scholar
  16. Feng Z.-D., 1998: Last glacial snow lines in the Tibetan Plateau: an argument against an extensive coalescing icesheet. GeoJournal, 44(4): 355-362.CrossRefGoogle Scholar
  17. Flohn H., 1988: Das Problem der Klimaänderungen in Vergangenheit und Zukunft. Wiss. Buchges.Google Scholar
  18. Hagen T., 1969: Report on the Geological Survey of Nepal. Vol. 86/2 (Denkschrift der Schweizerischen Naturforschenden Gesellschaft).Google Scholar
  19. Han Tonglin, 1991: The great Qinghai-Xizang Ice Sheet. Geological Publishing House, Peking.Google Scholar
  20. Heuberger H., 1986: Untersuchungen über die eiszeitliche Vergletscherung des Mt. Everest-Gebietes, Südseite, Nepal. In: Kuhle M (ed.), Göttinger Geographische Abhandlungen 81 (Internationales Symposium über Tibet und Hochasien vom 8.–11.10.1985), pp. 29-30.Google Scholar
  21. Hövermann J. and Hövermann E., 1991: Pleistocene and holocene geomorphological features between the Kunlun Mountains and the Taklamakan Desert. Die Erde, Ergänzungsheft 6: 51-72.Google Scholar
  22. Iturrizaga L., 1998: Die Schuttkörper in Hochasien. Eine geomorphologische Bestandsaufnahme und Typologie postglazialer Hochgebirgsschuttkörper im Hindukusch, Karakorum und Himalaya. Dissertation, Geographisches Institut der Universität Göttingen, 320 pp.Google Scholar
  23. Jäkel D. and Hofmann J., 1991: Glacial and periglacial features in the upper Keriya valley (Kunlun Mountains). Die Erde, Ergänzungsheft, 5: 35-50.Google Scholar
  24. Klebelsberg R.v., 1948: Handbuch der Gletscherkunde und Glazialgeologie. Vol. 1 and 2.Google Scholar
  25. Kopp D., 1965: Die periglaziäre Deckzone (Geschiebedecksand) im nordwestdeutschen Tiefland und ihre bodenkundliche Bedeutung. Berichte der geol. Ges. DDR, 10(6): 739-771.Google Scholar
  26. Kaufmann G. and Lambeck K., 1997: Implications of Late Pleistocene Glaciation ot the Tibetan Plateau for present-day uplift rates and gravity anomalies. Quaternary Research 48: 267-279.CrossRefGoogle Scholar
  27. Kuhle M., 1978a: Über Periglazialerscheinungen im Kuh-i-Jupar (SE-Iran) und im Dhaulagiri-Himalaya (Nepal) sowie zum Befund einer Solifluktionsobergrenze. Colloque sur le Periglaciaire d'Altitude du Domaine Mediterranée et abords, IGU et CNFDG: 289-310.Google Scholar
  28. Kuhle M., 1980: Klimageomorphologische Untersuchungen in der Dhaulagiri-und Annapurna-Gruppe (Zentraler Himalaya). Tagungsbericht und wissenschaftliche Abhandlungen, 42. Deutscher Geographentag in Göttingen: 244-247.Google Scholar
  29. Kuhle M., 1982: Der Dhaulagiri-und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Zeitschrift für Geomorphologie Suppl., 41(1/2): 1-229, 1–184.Google Scholar
  30. Kuhle M., 1982e: Was spricht für eine pleistozäne Inlandvereisung Hochtibets. Sitzungsberichte und Mitteilungen der Braunschweigischen Wissenschaftlichen Gesellschaft, Sonderband 6: Die 1. Chinesisch/Deutsche Tibet-Expedition 1981. Braunschweig-Symposium vom 14.–16.04.1982: 68-77.Google Scholar
  31. Kuhle M., 1983: Der Dhaulagiri-und Annapurna-Himalaya. Empirische Grundlage. Ergänzungsband III, Gebr. Bornträger, Berlin-Stuttgart: 1-383.Google Scholar
  32. Kuhle M., 1983a: Zur Geomorphologie von S-Dicksonland (W-Spitzbergen) mit Schwerpunkt auf der quartären Vergletscherungsgeschichte. Polarforschung, 53(1): 31-57.Google Scholar
  33. Kuhle M., 1983c: Postglacial Glacier Stades of Nugssuaq Peninsula, Westgreenland (70°03′–70°10′ N). In: Kinzl H. and Schroeder-Lanz H. (eds), Late-and Postglacial Oscillations of Glaciers: Glacial and Periglacial Forms: 325-355.Google Scholar
  34. Kuhle M., 1985: Permafrost and periglacial indicators on the Tibetan Plateau from the Himalaya Mountains in the South to the Quilian Shan in the North (28–40° N). Zeitschrift für Geomorphologie, 29(2): 183-192.Google Scholar
  35. Kuhle M., 1985c: Ein subtropisches Inlandeis als Eiszeitauslöser. Südtibetund Mt. Everest Expedition 1984. Georgia Augusta, Nachrichten aus der Universität Göttingen, 42: 35-51.Google Scholar
  36. Kuhle M., 1986e: Former glacial stades in the mountain areas surrounding Tibet — In the Himalayas (27–29° N: Dhaulagiri-, Annapurna-, Cho Oyu-, Gyachung Kang-areas) in the south and in the Kuen Lun and Quilian Shan (34–38° N: Animachin, Kakitu) in the north. In: Joshi S.C., Haigh M.J., Pangtey Y.P.S., Joshi D.R., Dani D.D. (Himalayan Research Group) (eds), Nepal Himalaya — Geo-Ecological Perspektives: 437-473.Google Scholar
  37. Kuhle M., 1987a: Glacial, Nival and Periglacial Environments in Northeastern Qinghai-Xizang Plateau. In: Hövermann J. and Wenjing W. (eds), Report on Northeastern Part of Qinghai-Xizang (Tibet)-Plateau by the Sino-West-German Scientific Expedition 1981. Science Press, Beijing: 176-244.Google Scholar
  38. Kuhle M., 1987b: The Problem of a Pleistocene Inland Glaciation of the Northeastern Quinghai-Xizang Plateau (Tibet). In: Hövermann J. and Wenjing W. (eds), Reports on the Northeastern Part of Quinghai-Xizang (Tibet)-Plateau by the Sino-German Scientific Expedition 1981: 250-315.Google Scholar
  39. Kuhle M., 1987c: Absolute Datierungen zur jüngeren Gletschergeschichte im Mt. Everest-Gebiet und die mathematische Korrektur von Schneegrenzberechnungen. Tagungsbericht des 45. Deutschen Geographentages, Berlin 1985. Stuttgart: 200-208.Google Scholar
  40. Kuhle M., 1987d: Subtropical mountain-and Highland Glaciation as Ice Age Triggers and the warning of the Glacial Periods in the Pleistocene. GeoJournal, 14(4): 393-421.Google Scholar
  41. Kuhle M., 1988b: The Pleistocene Glaciation of Tibet and the Onset of Ice Ages-An Autocycle Hypothesis. GeoJournal, 17(4): 581-596 (In: Kuhle M. and Wenjing W. (eds), Tibet and High-Asia, Results of the Sino-German Joint Expeditions (I)).Google Scholar
  42. Kuhle M., 1988c: Die eiszeitliche Vergletscherung West-Tibets zwischen Karakorum und Tarim-Becken und ihr Einfluß auf die globale Energiebilanz. Geographische Zeitschrift, 76(3): 135-148.Google Scholar
  43. Kuhle M., 1988f: Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the problem of inland ice. Results of the Shisha Pangma and Mt. Everest Expedition 1984. GeoJournal, 17(4): 457-512 (In: Kuhle M. and Wenjing W. (eds), Tibet and High-Asia, Results of the Sino-German Joint Expeditions (I)).Google Scholar
  44. Kuhle M., 1989e: Die Inlandvereisung Tibets als Basis einer in der Globalstrahlungsgeometrie fußenden, reliefspezifischen Eiszeittheorie. Petermanns Geographische Mitteilungen, 133(4): 265-285.Google Scholar
  45. Kuhle M., 1990a: Ice marginal ramps and alluvial fans in semi-arid mountains: Convergence and difference. In: Rachocki A.H. and Church M. (eds), Alluvial fans — A field approach. Vol. 3: 55-68.Google Scholar
  46. Kuhle M., 1990c: The cold desert of High Asia (Tibet and contiguous mountains). GeoJournal, 20(3): 319-323.CrossRefGoogle Scholar
  47. Kuhle M., 1990e: The probability of proof in geomorphology — an example of the application of information theory to a new kind of glacigenic morphological tye, the ice-marginal ramp (Bortensander). GeoJournal, 21(3): 195-222.CrossRefGoogle Scholar
  48. Kuhle M., 1991d: Observations supporting the Pleistocene Inland Glaciation of High Asia. GeoJournal, 25(2–3): 133-233 (In: Kuhle M. and Daoming X. (eds), Tibet and High Asia, Results of the Sino-German Joint Expeditons (II)).Google Scholar
  49. Kuhle M., 1993: Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. In: Mörner N.A. (ed.), Uplift of the Tibetan Plateau, Paleogeophysics and Geodynamics, Stockholm (P&G).Google Scholar
  50. Kuhle M., 1993c: Eine Autozyklentheorie zur Entstehung und Abfolge der quartären Kalt-und Warmzeiten auf der Grundlage epirogener und glazialisostatischer Bewegungsinterferenzen im Bereich des tibetischen Hochlandes. Petermanns Geographische Mitteilungen, 137: 133-152.Google Scholar
  51. Kuhle M., 1994b: Present and Pleistocene Glaciation on the North-Western Margin of Tibet between the Karakorum Main Ridge and the Tarim Basin supporting the evidence of a Pleistocene Inland Glaciation in Tibet. GeoJournal, 33(2–3): 133-272 (In: Kuhle M. (ed.), Tibet and High Asia, Results of the Sino-German and Russian-German Joint Expeditions (III)).CrossRefGoogle Scholar
  52. Kuhle M., 1995: Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal, 37(4): 431-449.CrossRefGoogle Scholar
  53. Kuhle M., 1996: Rekonstruktion der maximalen eiszeitlichen Gletscherbedeckung im Nanga Parbat Massiv (35°05′–40° N/74°20′–75° E). Beiträge und Materialien zur Regionalen Geographie 8 (Forschung am Nanga Parbat. Geschichte und Ergebnisse): 135-156.Google Scholar
  54. Kuhle M., 1997b: New findings concerning the Ice Age (Last Glacial Maximum) Glacier Cover of the East-Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice. GeoJournal, 42(2–3): 87-257 (In: Kuhle M. (ed.), Tibet and High Asia. Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research) IV.CrossRefGoogle Scholar
  55. Kuhle M., 1998: Reconstruction of the 2.4 million km2 late Pleistocene Ice Sheet on the Tibetan Plateau and its impact on the Global Climate. Quaternary International, 45/46: 71-108; Erratum 47/48, 173–182.CrossRefGoogle Scholar
  56. Kuhle M., 1998a: Neue Ergebnisse zur Eiszeitforschung Hochasiens in Zusammenschau mit den Untersuchungen der letzten zwanzig Jahre. Petermanns Geographische Mitteilungen, 142(3–4): 219-226.Google Scholar
  57. Kuhle M. and Jacobsen J.P., 1988: On the Geoecology of Southern Tibet — Measurements of climate parameters including surface-and soiltemperatures in debris, rock, snow, firn, and ice during the South Tibetand Mt. Everest Expedition in 1984. GeoJournal, 17(4): 597-614 (In: Kuhle M. and Wenjing W (eds), Tibet and High-Asia, Results of the Sino-German Joint Expeditions (I)).Google Scholar
  58. Kuhle M. and Wenjing W., 1988: The Sino-German joint expedition to Southern Tibet, Shisha Pangma and the northern flank of Chomolungma (Mt. Everest) 1984 — Expedition Report. GeoJournal, 17(4): 447-456 (In: Kuhle M. and Wenjing W (eds), Tibet and High-Asia, Results of the Sino-German Joint Expeditions (I)).Google Scholar
  59. Lundqvist J., 1984: INQUA-commission on genesis and lithology of Quaternary deposits. Striae, 20: 11-14.Google Scholar
  60. Lundqvist J., 1989: Genetic classification of glacigenic deposits. In: Goldthwaite R.P. and Match C.L. (eds), Report of the Commission on the Genesis and Lithology of Glacial Quaternary Deposits of the International Union for Quaternary Research (INQUA), Final. Balkema, Rotterdam, Brookfield: 3-16.Google Scholar
  61. Milankovic M., 1941: Kanon der Erdbestrahlung. Belgrad.Google Scholar
  62. Norin E., 1932: Quaternary climatic changes within the Tarim Basin. Geographical Review, 22: 591-598.CrossRefGoogle Scholar
  63. Odell N.E., 1925: Observation on the rocks and glaciers of Mount Everest. Geographical Journal, 66: 289-315.CrossRefGoogle Scholar
  64. Ono Y., 1986: Glacial fluctuations in the Langtnag Valley, Nepal Himalaya. In: Kuhle M (ed.), Göttinger Geographische Abhandlungen (Internationales Symposium über Tibet und Hochasien vom 8.–11. Oktober 1985 im Geographischen Institut der Universität Göttingen): 31-38.Google Scholar
  65. Péwe T.L., Liu Tungsheng, Slatt R.M. and Li Bingyuan, 1995: Origin and character of loesslike silt in the Southern Qinghai-Xizang (Tibet) Plateau, China. US Geological Survey, Professional Paper, 1549, 55.Google Scholar
  66. Shiraiwa T. and Watanabe T., 1991: Late Quaternary glacial fluctuations in the Langtang Valley, Nepal Himalaya, reconstructed by relative dating methods. Arctic and Alpine Research, 23(4), 404-416.CrossRefGoogle Scholar
  67. Shiraiwa T., 1993: Paleoenvironmental reconstruction of the Himalaya Tibetan region on the basis of glacial landforms. Transactions, Japanese Geomorphological Union, 14(3): 195-220.Google Scholar
  68. Shi Yafeng, Li Bingyuan, Li Jijun, Chi Zhijiu, Zheng Benxing, Zhang Qingsong, Wang Fubao, Zhou Shangzhe, She Zuhui, Jiao Keqin and Kang Jianchang (eds), 1991: Quaternary Glacial Distribution Map of the Qinghai-Xizang (Tibet) Plateau. Quaternary Glacier and Environment Research Center, Lanzhou University. Scale 1:3 000 000.Google Scholar
  69. Shi Yafeng, Zheng Benxing and Li Shijie, 1991: Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle's ice sheet hypothesis. Zeitschrift für Geomorphologie, N.F. Suppl. 84: 19-32.Google Scholar
  70. Trinkler E., 1930b: The ice age on the Tibetan Plateau and in the adjacent regions. Geographical Journal, 17(4): 525-543.Google Scholar
  71. Trinkler E., 1932: Geographische Forschungen im westlichen Zentralasien und Karakorum-Himalaya. Wissenschaftliche Ergebnisse der Dr. Trinklerschen Zentralasien-Expedition. Berlin, 133 pp.Google Scholar
  72. Van Campo E. and Gasse F., 1993: Pollen-and diatom-inferred climatic and hydrological changes in Sumix Co Basin (Western Tibet) since 13 000 yr B.P. Quaternary Research, 39: 300-313.CrossRefGoogle Scholar
  73. Wissmann H. v., 1959: Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweis auf die Vergletscherung der letzten Eiszeit. Akad. Wiss. Lit. Abh., Math.-nat. wiss. Kl. 14, Mainz: 1103-1407.Google Scholar
  74. Xu Daoming, 1988: Characteristics of debris flow caused by outburst of Glacial Lakes on the Boqu River in Xizang, China. GeoJournal, 17(4): 569-580 (In: Kuhle M. and Wenjing W. (eds), Tibet and High Asia. Results of the Sino-German-Joint Expedition (I)).CrossRefGoogle Scholar
  75. Zheng Benxing, 1988: Quaternary glaciation of Mt. Qomolangma-Xixabangma region. GeoJournal, 17(4): 525-543 (In: Kuhle M. and Wenjing W. (eds), Tibet and High-Asia, Results of the Sino-German Joint expeditions (I)).CrossRefGoogle Scholar
  76. Zheng Benxing and Shi Yafeng, 1976: Variations of glaciers on the Mount Qomolongma area. Reports on the Scientific Expeditions (1966–1968) in the Mount Qomolongma Area, Glaciology and Geomorphology, pp. 92-110.Google Scholar
  77. Zheng Benxing and Rutter N., 1998: On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau. Quaternary International, 45–46: 107-120.Google Scholar
  78. Zhou Youwu and Guo Dongxin, 1982: Principal characteristics of permafrost in China. Journal Glaciology and Cryopedology, 4(1): 1-19.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Matthias Kuhle
    • 1
  1. 1.Department of GeographyUniversity of GöttingenGöttingenGermany (Fax

Personalised recommendations