, Volume 145, Issue 1, pp 43–56 | Cite as

Production of mycotoxins on artificially and naturally infested building materials

  • K. F. Nielsen
  • S. Gravesen
  • P. A. Nielsen
  • B. Andersen
  • U. Thrane
  • J. C. Frisvad


In this study, the ability to produce mycotoxins during growth on artificially infested building materials was investigated for Penicillium chrysogenum, Pen. polonicum, Pen. brevicompactum, Chaetomium spp., Aspergillus ustus, Asp. niger, Ulocladium spp., Alternaria spp., and Paecilomyces spp., all isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high performance liquid chromatography-diode array detection and thin layer chromatography. All six isolates of C. globosum produced the toxic chaetoglobosins A and C, at levels of up to 50 and 7 μg/cm2 respectively. The quantities of secondary metabolites produced by Penicillia were generally low, and no toxin production was detected from any of the five isolates of Pen. chrysogenum. Both isolates of Pen. polonicum produced 3-methoxy-viridicatin, verrucosidin, and verrucofortine. Two of five isolates of Pen. brevicompactum produced mycophenolic acid. From five out of six isolates of Alternaria spp., alternariol and alternariol monomethyl ether were detected. From Ulocladium spp., Paecilomyces spp., and Asp. ustus no known mycotoxins were detected, although the latter two are known mycotoxin producers. Asp. niger produced several naphtho-γ-pyrones and tetra-cyclic compounds. All investigated species, especially Asp. ustus and Asp. niger produced many unknown secondary metabolites on the building materials. Analyses of wallpaper and glass-fibre wallpaper naturally infested with Asp. versicolor revealed sterigmatocystin and 5-methoxysterigmatocystin. Analyses of naturally infested wallpaper showed that C. globosum produced the chaetoglobosins A and C, and Pen. chrysogenum produced the antibiotic meleagrin.

alternariol chaetoglobosin indoor air mycotoxin sick building syndrome sterigmatocystin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flannigan B, McCabe EL, McGarry F. Allergenic and toxigenic micro-organisms in houses. J Appl Bacteriol 1991; 70: 61–73.Google Scholar
  2. 2.
    Gravesen S, Frisvad JC, Samson RA. Microfungi. Copenhagen, Munksgaard, 1994.Google Scholar
  3. 3.
    Husman T. Health effects of indoor-air microorganisms. Scand J Work Environ Health 1996; 22: 5–13.PubMedGoogle Scholar
  4. 4.
    Lacey J. Aerobiology and health: the role of airborne fungal spores in respiratory disease. In: Hawksword DL, ed. Frontiers in Mycology. Wallingford: CAB International, 1991: 157–184.Google Scholar
  5. 5.
    Miller JD, Young JC. The use of ergosterol to measure exposure to fungal propagules in indoor air. Am Ind Hyg Assoc J 1997; 58: 39–43.PubMedGoogle Scholar
  6. 6.
    Reynolds SJ, Streifel AJ, McJilton CE. Elevated airborne concentrations of fungi in indoor residential and office environments. Am Ind Hyg Assoc J 1990; 51: 601–604.Google Scholar
  7. 7.
    Ezeonu IM, Noble JA, Simmons RB, Prince DL, Crow SA, Ahearn DG. Effects of relative humidity on fungal colonization of fiberglass insulation. Appl Environ Microbiol 1994; 60: 2149–2151.PubMedGoogle Scholar
  8. 8.
    Gervais P, Grajek W, Bensoussan M, Molin P. Influence of the water activity of a solid substrate on the growth rate and sporogenesis of filamentous fungi. Biotechnol Bioeng 1988; 31: 457–463.CrossRefGoogle Scholar
  9. 9.
    Grant C, Hunter CA, Flannigan B, Bravery AF. The moisture requirements of moulds isolated from domestic dwelling. Int Biodeter 1989; 25: 259–284.CrossRefGoogle Scholar
  10. 10.
    Frisvad JC, Gravesen S. Penicillium and Aspergillus from Danish homes and working places with indoor air Problems: Identification and mycotoxin determination. In: Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, eds. Health implications of fungi in indoor air environment. Amsterdam: Elsevier, 1994: 281–290.Google Scholar
  11. 11.
    Miller JD, Laflamme AM, Sobol Y, Lafontaine P, Greenhalgh R. Fungi and fungal products in canadian houses. Int Biodeter 1988; 24: 103–120.CrossRefGoogle Scholar
  12. 12.
    Nielsen KF, Thrane U, Larsen TO, Nielsen PA, Gravesen S. Production of mycotoxins on artificially inoculated building materials. Int Biodeter Biodegrad 1998; 42: 8–17.Google Scholar
  13. 13.
    Filtenborg O, Frisvad JC, Thrane U. Moulds in food spoilage. Int J Food Microbiol 1996; 33: 85–102.CrossRefPubMedGoogle Scholar
  14. 14.
    Frisvad JC. Secondary metabolites and species models in Penicillium and Aspergillus. [Dissertation]. Lyngby, Denmark: Department of Biotechnology, Technical University of Denmark, 1998.Google Scholar
  15. 15.
    Larsen FO, Clementsen P, Hansen M, Maltbæk N, Gravesen S, Skov P, Norn S. The microfungi Trichoderma viride potentiates histamine release from human bronchoalveloar cells. APMIS 1996; 104: 673–679.CrossRefPubMedGoogle Scholar
  16. 16.
    Rylander R. Airborne (1–3)-beta-D-glucan and airways disease in a day-care center before and after renovation. Arch Environ Med 1997; 52: 281–285.Google Scholar
  17. 17.
    Rylander R. Dampness and microbial growth as risk factors for respiratory disease in indoor environments. Göteborg, Sweden: Department of Environmental Medicine, University of Gothenborg, 1996.Google Scholar
  18. 18.
    Joki S, Saano V, Reponen T, Nevalainen A. Effects of indoor microbial metabolites on ciliary function in respiratory airways. In: Jaakkola JJK, Ilmarinen R, Seppänen O, eds. Effects of indoor air '93. Vol. 1. Helsinki, Indoor Air, 1993: 259–261.Google Scholar
  19. 19.
    Larsen FO, Clementsen P, Hansen M, Maltbæk N, Larsen TO, Nielsen KF, Gravesen S, Skov P, Norn S. Volatile organic compounds from the indoor mould Trichoderma viride cause histamine release from human bronchoalveolar cells. Inflammation Res 1998; 47: S5–S6.CrossRefGoogle Scholar
  20. 20.
    Pasanen A-L, Lappalainen S, Korpi A, Pasanen P, Kalliokoski P. Volatile metabolic products of moulds as indicators of mould problems in buildings. Indoor Air 1996; 2: 669–672.Google Scholar
  21. 21.
    Wilkins CK, Nielsen EM, Wolkoff P. Patterns in volatiles organic compounds in dust from mouldy buildings. Indoor Air 1997; 7: 128–134.CrossRefGoogle Scholar
  22. 22.
    Wolkoff P, Clausen PA, Jensen B, Nielsen GD, Wilkins CK. Are we measuring the relevant indoor pollutants? Indoor Air 1997; 7: 92–106.CrossRefGoogle Scholar
  23. 23.
    Croft WA, Jarvis BB, Yatawara CS. Airborne outbreak of Trichothecene Mycotoxicosis. Atmos Environ 1986; 20: 549–552.CrossRefGoogle Scholar
  24. 24.
    Nikulin M, Reijula K, Jarvis BB, Veijalaninen P, Hintikka EL. Effects of intranasal exposure to spores of Stachybotrys atra in mice. Fundam Appl Toxicol 1997; 35: 182–188.CrossRefPubMedGoogle Scholar
  25. 25.
    Nikulin M, Reijula K, Jarvis BB, Hintikka E-L. Experimental lung mycotoxicosis induced by Stachybotrys atra. Int J Exp Pathol 1997; 77: 213–218.CrossRefGoogle Scholar
  26. 26.
    Koscick RL, Willis J, Cooper G, Dearborn DG. Pulmonary cytology findings in patients with infantile pulmonary hemosiderosis secondary to Stachybotrys atra. Lab Invest 1997; 76: 191–191.Google Scholar
  27. 27.
    Etzel RA, Montana E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG. Acute Pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adol Med 1998; 152: 757–762.Google Scholar
  28. 28.
    Jarvis BB, Sorenson WG, Hintikka E-L, Nikulin M, Zhou Y, Jiang J, Wang S, Hinkley S, Etzel RA, Dearborn DG. Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microbiol 1998; 64: 3620–3625.PubMedGoogle Scholar
  29. 29.
    Hendry KM, Cole C. A review of mycotoxins in indoor air. J Toxicol Environ Health 1993; 38: 183–198.CrossRefPubMedGoogle Scholar
  30. 30.
    Hintikka E-L, Nikulin M. Airborne mycotoxins in agricultural and indoor environments. Indoor Air 1998; Suppl. 4: 66–70.CrossRefGoogle Scholar
  31. 31.
    Andersen B, Thrane U. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics. Can J Microbiol 1996; 42: 685–689.CrossRefGoogle Scholar
  32. 32.
    Frisvad JC, Thrane U. Standardised high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (Diode Array Detection). J Chrom 1987; 404: 195–214.CrossRefGoogle Scholar
  33. 33.
    Larsen TO, Frisvad JC. Production of volatiles and presence of mycotoxins in conidia of common indoor Penicilia and Aspergillii. In: Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, eds. Health implications of fungi in indoor air environment. Amsterdam: Elsevier, 1994: 251–279.Google Scholar
  34. 34.
    Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food-borne fungi. Baarn: Centraalbureau voor Schimmelcultures, 1995.Google Scholar
  35. 35.
    Cvetnic Z, Pepelnjak S. Distribution and mycotoxinproducing ability of some fungal isolates from the air. Atmos Environ 1997; 31: 491–495.CrossRefGoogle Scholar
  36. 36.
    Johanning E, Biagini RE, Hull D, Morey PR, Jarvis BB, Landsbergis P. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in awaterdamaged office environment. Int Arch Occup Environ Health 1996; 68: 207–218.PubMedGoogle Scholar
  37. 37.
    Nielsen KF, Hansen MØ, Larsen TO, Thrane U. Production of trichothecene mycotoxins on water damaged gypsum boards in Danish buildings. Int Biodeter Biodegrad 1998; 42: 1–7.CrossRefGoogle Scholar
  38. 38.
    Nikulin M, Pasanen A-L, Berg S, Hintikka E-L. Stachybotrys atra growth and toxin production in some building materials and fodder under different relative humidities. Appl Environ Microbiol 1994; 60: 3421–3424.PubMedGoogle Scholar
  39. 39.
    Ren P, Ahearn DG, Crow SA. Mycotoxins of Alternaria alternata produced on ceiling tiles. J Indust Microbiol 1998; 20: 53–54.CrossRefGoogle Scholar
  40. 40.
    Dreborg S, Einarsson R, Lau S, Munier AKN, Wahn U. Dust sampling for determination of allergen content. Allergy 1995; 50: 188–189.CrossRefPubMedGoogle Scholar
  41. 41.
    Smedsgaard J. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 1997; 760: 264–270.CrossRefPubMedGoogle Scholar
  42. 42.
    Simmons EG. Alternaria taxonomy: current status, viewpoint, challenge. In: Chelkowski J, Visconti A, eds. Alternaria: biology, plant diseases and metabolites. Amsterdam: Elsevier, 1992: 1–35.Google Scholar
  43. 43.
    Frisvad JC, Filtenborg O. Classification of terverticillate Penicilia based on profile of mycotoxins and other secondary metabolites. Appl Environ Microbiol 1983; 46: 1301–1310.PubMedGoogle Scholar
  44. 44.
    Ohtsubo K, Saito M, Sekita S, Yoshihira K, Natori S. Acute toxic effects of chaetoglobosin A a new cytochalasan compound produced by Chaetomium globosum, on mice and rats. Japan J Exp Med 1978; 48: 105–110.Google Scholar
  45. 45.
    Udagawa S, Muroi T, Kurata H, Sekita S, Yoshihira K, Natori S, Umeda M. The production of chaetoglobosins, sterigmatocystin, O-methylsterigmatocystin, and chaetocin by Chaetomium spp. and related fungi. Can J Microbiol 1979; 25: 170–177.CrossRefPubMedGoogle Scholar
  46. 46.
    Hodgson MJ, Morey PR, Leung WY, Morrow L, Miller JD, Jarvis BB, Robbins H, Halsey JF, Storey E. Buildingassociated pulmonary disease from exposure to Stachybotrys chartarum and Aspergillus versicolor. J Occup Environ Med 1998; 40: 241–249.CrossRefPubMedGoogle Scholar
  47. 47.
    Kozak PP, Gallup J, Cummings LH, Gillman SA. Currently avalible methods for homes surveys. II Example of problem homes surveyed. Ann Allergy 1980; 45: 167–176.PubMedGoogle Scholar
  48. 48.
    Smoragiewicz W, Cossette B, Boutard A, Krzystyniak K. Trichothecene mycotoxins in the dust ventilation system in office buildings. Int Arch Occup Environ Health 1993; 65: 113–117.CrossRefPubMedGoogle Scholar
  49. 49.
    Langseth W, Rundberget T. Instrumental methods for determination of nonmacrocyclic trichothecenes in cereals, foodstuffs and cultures. J Chromatogr A 1998; 815: 103–121.CrossRefGoogle Scholar
  50. 50.
    Olsen JH, Dragstead L, Autrup H. Cancer risk and occupational exposure to aflatoxins in Denmark. Br J Cancer 1988; 58: 392–396.PubMedGoogle Scholar
  51. 51.
    Pestka JJ, Bondy GS. Immunotoxic effects of mycotoxins. In: Miller JD, Trenholm HL, eds. Mycotoxins in Grain – Compounds other than Aflatoxins. St. Paul: Egan Press, 1994: pp. 339–359.Google Scholar
  52. 52.
    Pasanen A-L, Kalliokoski P, Pasanen P, Jantunen MJ, Nevalainen A. Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environ Int 1991; 17: 225–228.CrossRefGoogle Scholar
  53. 53.
    Pasanen A-L, Pasanen P, Jantunen MJ, Kalinoski HT. Significance of air humidity and air velocity for fungal spore release into the air. Atmos Environ 1991; 25A: 459–462.Google Scholar
  54. 54.
    Larsen FO, Christensen G, Clementsen P, Gravesen S, Skov P, Norn S. Microfungi in indoor air are able to trigger histamine release by non-IgE-mediated mechanisms. Inflam Res 1996; 45: S23–S24.Google Scholar
  55. 55.
    Pasanen A-L, Lappalainen S, Korpi A, Pasanen P, Kalliokoski P. Emission chracteristics of formaldehyde from domestic kerosene heaters in dwellings. Indoor Air 1996: 669–674.Google Scholar
  56. 56.
    Ström G, West J, Wessen B, Palmgren U. Quantitative analysis of microbial volatiles in damp Swedish houses. In: Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, eds. Health implications of fungi in indoor air environment. Amsterdam: Elsevier, 1994: 291–305.Google Scholar
  57. 57.
    Anderson MA, Nikulin M, Köljalg U, Anderson MC, Rainey F, Reijula K, Hintikka E-L, Salkinoja-Salonen M. Bacteria, moulds, and toxins in water-damaged building materials. Appl Environ Microbiol 1997; 63: 387–393.Google Scholar
  58. 58.
    Rylander R. Microbial Cell wall constituents in indoor air and heir relation to disease. Indoor Air 1998; Suppl. 4: 59–65.CrossRefGoogle Scholar
  59. 59.
    Frisvad JC, Thrane U. Liquid chromatography of mycotoxins. In: Betina V, ed. Chromatography of mycotoxins: Techniques and applications. J Chromatogr Library. Amsterdam: Elsevier, 1993: 253–372.Google Scholar
  60. 60.
    Andersen B, Thrane U. Secondary metabolites produced by Alternaria infectoria and their use as chemotaxonomic markers. Mycotoxin Res 1996; 12: 54–60.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • K. F. Nielsen
  • S. Gravesen
  • P. A. Nielsen
  • B. Andersen
  • U. Thrane
  • J. C. Frisvad

There are no affiliations available

Personalised recommendations