Plasma Chemistry and Plasma Processing

, Volume 21, Issue 1, pp 23–35 | Cite as

Generation of Long, Laminar Plasma Jets at Atmospheric Pressure and Effects of Flow Turbulence

  • Wenxia Pan
  • Wenhua Zhang
  • Wenhong Zhang
  • Chengkang Wu
Article

Abstract

Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.

laminar plasma jet flow turbulence arc jet length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997).Google Scholar
  2. 2.
    E. Pfender, Plasma Chem. Plasma Process. 19, 1 (1999).Google Scholar
  3. 3.
    N. Ohtake, Y. Kuriyama, M. Yoshikawa, H. Obana, M. Kito, and H.Saito, Intern. J. Jpn. Soc. Prec. Eng. 25, 5 (1991).Google Scholar
  4. 4.
    V.S. Klubnikin, Thermal Plasma and New Materials Technology, O.P. Solonenko and M.F. Zhukov, eds.,Vol.2 (1995), p.493, Cambridge Interscience Publishing, CambridgeGoogle Scholar
  5. 5.
    R. Bolot, M. Imbert, and C. Coddet, Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed. (1997), pp.549-555, Materials Park,OH, ASM International.Google Scholar
  6. 6.
    X. Chen, Thin Solid Films, 345, 140 (1999).Google Scholar
  7. 7.
    E. Pfender, Thin Solid Films, 238, 228 (1994).Google Scholar
  8. 8.
    O.P. Solonenko, V.A. Neronov, V.I. Kuz’ min, A.V.Smirnov,and M.A. Korchagin, Proc. 14th Intern. Symp. Plasma Chem., H. Hrabovsky, M. Konra’ d, and V. Kopecky, eds. (1999), p.2127, Prague,Czech Republic, Institute of Plasma Physics ASCR (Publisher).Google Scholar
  9. 9.
    H.C. Wu and X.D. Yang, Proc. 13th Intern. Symp. Plasma Chem., C.K. Wu, ed. (1997), p.148, Beijing,China, Peking University Press.Google Scholar
  10. 10.
    K.D. Landes, Proc. 13th Intern. Symp. Plasma Chem., C.K. Wu, ed. (1997), p.1451. Beijing,China, Peking University Press.Google Scholar
  11. 11.
    V.I. Kuz’ min, O.P. Solonenko, and M.F. Zhukov, Proc. 8th Nat. Thermal Spray Conf., Houston,Texas (1995), pp.83-88, Materials Park,OH, ASM International.Google Scholar
  12. 12.
    O.P. Solonenko, Thermal Plasma and New Materials Technology, O.P. Solonenko and M.F. Zhukov, eds.,Vol.2 (1995), p.7, Cambridge Interscience Publishing, CambridgeGoogle Scholar
  13. 13.
    A.H. Diliwari and J. Szekely, Plasma Chem. Plasma Process 7, 317 (1987).Google Scholar
  14. 14.
    X. Chen, Heat Transfer and Fluid Flow under Thermal Plasma Conditions, Science Press, Beijing, 1993 (in Chin.).Google Scholar
  15. 15.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Vol.1, Plenum Press, New York (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Wenxia Pan
    • 1
  • Wenhua Zhang
    • 1
  • Wenhong Zhang
    • 1
  • Chengkang Wu
    • 1
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations