Journal of Neurocytology

, Volume 28, Issue 4–5, pp 383–395 | Cite as

Axonal pathology in myelin disorders

  • Carl Bjartmar
  • Xinghua Yin
  • Bruce D. Trapp
Article

Abstract

Myelination provides extrinsic trophic signals that influence normal maturation and long-term survival of axons. The extent of axonal involvement in diseases affecting myelin or myelin forming cells has traditionally been underestimated. There are, however, many examples of axon damage as a consequence of dysmyelinating or demyelinating disorders. More than a century ago, Charcot described the pathology of multiple sclerosis (MS) in terms of demyelination and relative sparing of axons. Recent reports demonstrate a strong correlation between inflammatory demyelination in MS lesions and axonal transection, indicating axonal loss at disease onset. Disruption of axons is also observed in experimental allergic encephalomyelitis and in Theiler's murine encephalomyelitis virus disease, two animal models of inflammatory demyelinating CNS disease. A number of dysmyelinating mouse mutants with axonal pathology have provided insights regarding cellular and molecular mechanisms of axon degeneration. For example, the myelin-associated glycoprotein and proteolipid protein have been shown to be essential for mediating myelin-derived trophic signals to axons. Patients with the inherited peripheral neuropathy Charcot-Marie Tooth disease type 1 develop symptomatic progressive axonal loss due to abnormal Schwann cell expression of peripheral myelin protein 22. The data summarized in this review indicate that axonal damage is an integral part of myelin disease, and that loss of axons contributes to the irreversible functional impairment observed in affected individuals. Early neuroprotection should be considered as an additional therapeutic option for these patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A., Attiwell, M., Trecarten, J., Perkins, S. & Bray, G. (1977) Abnormal myelination in transplanted Trembler mouse Schwann cells. Na ture 265, 73–75.Google Scholar
  2. Anderson, T. J., Schneider, A., Barrie, J. A., Klugmann, M., Mcculloch, M. C., Kirkham, D., Kyriakides, E., Nave, K.-A. & Griffiths, I. R. (1998) Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. Journal of Comparative Neurology 394, 506–519.Google Scholar
  3. Anzini, P., Neuberg, D. D.-H., Schachner, M., Nelles, E., Willecke, K., Zielasek, J., Toyka, K. V., Suter, U. & Martini, R. (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. Journal of Neuroscience 17, 4545–4551.Google Scholar
  4. Arnold, D. L., Reiss, G. T., Matthews, P. M., Francis, G. S., Collins, D. L., Wolfson, C. & Antel, J. P. (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Annals of Neurology 36, 76–82.Google Scholar
  5. Arquint, M., Roder, J., Chia, L.-S., Down, J., Wilkinson, O., Bayley, H., Braun, P. & Dunn, R. (1987) Molecular cloning and primary structure of myelin-associated glycoproteins. Proceedings of the National Academy of Sciences (USA) 84, 600–604.Google Scholar
  6. Barnes, D., Munro, P. M. G., Youl, B. D., Prineas, J. W. & Mcdonald, W. I. (1991) The longstandingMS lesion. Brain 114, 1271–1280.Google Scholar
  7. Bell, J. I. & Lathrop, G. M. (1996) Multiple loci for multiple sclerosis. Nature Genetics 13, 377–378.Google Scholar
  8. Bergoffen, J., Scherer, S. S., Wang, S., Oronzi scott, M., Bone, L. J., Paul, D. L., Chen, K., Lensch, M. W., Chance, P. F. & Fischbeck, K. H. (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039–2042.Google Scholar
  9. Bjartmar, C., Rudick, R., MÖrk, S. & Trapp, B. D. (1999) Axonal transection in multiple sclerosis [abstract]. Journal of Neurochemistry 72, S40.Google Scholar
  10. Bradley, W. G. (1987) Recent viewsonamyotrophic lateral sclerosis with emphasis on electrophysiological studies. Muscle Nerve 10, 490–502.Google Scholar
  11. Brown, A., Mcfarlin, D. E. & Raine, C. S. (1982) Chronologic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Laboratory Investigation 46, 171–185.Google Scholar
  12. BÖ, L., MÖrk, S., Kong, P. A., Nyland, H., Pardo, C. A. & Trapp, B. D. (1994) Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. Journal of Neuroimmunology 51, 135–146.Google Scholar
  13. Catterall, W. A. (1984) The molecular basis of neuronal excitability. Science 223, 653–661.Google Scholar
  14. Charcot, M. (1868) Histologie de le sclerose en plaques. Gazette Hopitaux 141, 554–558.Google Scholar
  15. Colello, R. J. & Pott, U. (1997) Signals that initiate myelination in the developing mammalian nervous system. Molecular Neurobiology 15, 83–100.Google Scholar
  16. Collins, B. E., Yang, L. J.-S., Mukhopadhyay, G., Filbin, M. T., Kiso, M., Hasegawa, A. & Schnaar, R. L. (1997) Sialic acid specificity of myelinassociated glycoprotein binding. Journal of Biological Chemistry 272, 1248–1255.Google Scholar
  17. Davie, C. A., Hawkins, C. P., Barker, G. J., Brennan, A., Tofts, P. S., Miller, D. H. & McDonald, W. I. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerois lesions. Brain 117, 49–58.Google Scholar
  18. Davie, C. A., Barker, G. J., Webb, S., Tofts, P. S., Thompson, A. J., Harding, A. E., Mcdonald, W. I. & Miller, D. H. (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118, 1583–1592.Google Scholar
  19. De Stefano, N., Matthews, P. M., Antel, J. P., Preul, M., Francis, G. & Arnold, D. L. (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Annals of Neurology 38, 901–909.Google Scholar
  20. De Stefano, N., Matthews, P. M., Fu, L., Narayanan, S., Stanley, J., Francis, G. S., Antel, J. P. & Arnold, D. L. (1998) Axonal damage correlates with disability in patients with relapsingremitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121, 1469–1477.Google Scholar
  21. De waegh, S. M. & Brady, S. T. (1990) Slow axonal transport in Trembler mouse: Altered cytoskeletal dynamics in a myelin deficient mouse model. Journal of Neuroscience 10, 1855–1865.Google Scholar
  22. De waegh, S. M. & Brady, S. T. (1991) Local control of axonal properties by Schwann cells: Neurofilaments and axonal transport in homologous and heterologous nerve grafts. Journal of Neuroscience Reserch 30, 201–212.Google Scholar
  23. De waegh, S. M., Lee, V. M.-Y. & Brady, S. T. (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–463.Google Scholar
  24. Dugandzija-novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience 15, 492–503.Google Scholar
  25. Duncan, I. D., Hammang, J. P. & Trapp, B. D. (1988) Abnormal compact myelin in the myelin-deficient rat: Absence of proteolipid protein correlates with a defect in the intraperiod line. Proceedings of the National Academy of Sciences (USA) 84, 6287–6291.Google Scholar
  26. Drescher, K. M., Pease, L. R. & Rodriques, M. (1997) Antiviral immune responses modulate the nature of central nervous system (CNS) disease in a murine model of multiple sclerosis. Immunological Reviews 159, 177–193.Google Scholar
  27. Dyck, P. J., Karnes, J. L. & Lambert, E. H. (1989) Longitudinal study of neuropathic deficits and nerve conduction abnormalities in hereditary motor and sensory neuropathy type 1. Neurology 39, 1302–1308.Google Scholar
  28. Dyck, P. J., Chance, P., Lebo. R. & Carney, J. A. (1993) Hereditary motor and sensory neuropathies. In Peripheral neuropathy, 3rd ed. (edited by Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. & Poduslo, J. F.), pp. 1094–1136. Philadelphia: WB Saunders.Google Scholar
  29. Ebers, G. C. & Dyment, D. A. (1998) Genetics of multiple sclerosis. Seminars in Neurology 18, 295–299.Google Scholar
  30. Ferguson, B., Matyszak, M. K., Esiri, M. M. & Perry, V. H. (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399.Google Scholar
  31. Friedman, B., Scherer, S. S., Rudge, J. S., Helgren, M., Morrisey, D., Mcclain, J., Wang, D., Wiegand, S. J., Furth, M. E., Lindsay, R. M. & Ip, N. Y. (1992) Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 9, 295–305.Google Scholar
  32. Fu, L., Matthews, P. M., De stefano, N., Worsley, K. J., Narayanan, S., Francis, G. S., Antel, J. P., Wolfson, C. & Arnold, D. L. (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121, 103–113.Google Scholar
  33. Giese, K. P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–576.Google Scholar
  34. Greenfield, J. G. & King, L. S. (1936) Observations on the histopathology of the cerebral lesions in disseminated sclerosis. Brain 59, 445–458.Google Scholar
  35. Griffiths, I. R., Schneider, A., Anderson, J. & Nave, K.-A. (1995) Transgenic and natural mouse models of proteolipid protein (PLP) related dysmyelination and demyelination. Brain Pathology 5, 275–281.Google Scholar
  36. Griffiths, I., Klugmann, M., Anderson, T., Yool, D., Thomson, C., Schwab, M. H., Schneider, A., Zimmermann, F., McCulloch, M., Nadon, N. & Nave, K.-A. (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613.Google Scholar
  37. Hafer-macko, C., Hsieh, S.-T., Li, C. Y., Ho, T. W., Sheikh, K., Cornblath, D. R., Mckhann, G. M., Asbury, A. K. & Griffin, J. W. (1996) Acute motor axonal neuropathy: An antibody-mediated attack on axolemma. Annals of Neurology 40, 635–644.Google Scholar
  38. Hanemann, C. O. & MÖller, H. W. (1998) Pathogenesis of Charcot-Marie-Tooth IA (CMTIA) neuropathy. Trends in Neuroscience 21, 282–286.Google Scholar
  39. Hayasaka, K., Himoro, M., Sato, W., Takada, G., Uyemura, K., Shimizu, N., Bird, T. D., Coneally, P. M. & Chance, P. F. (1993) Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nature Genetics 5, 31–34.Google Scholar
  40. Helynck., G., Luu, B., Nussbaum, J. L., Picken, D., Skalidis, G., Trifilieff, E., Van dorsselaer, A., Seta, P., Sandeaux, R., Gavach, C., Heitz, F., Simon, D. & Spach, G. (1983) Brain proteolipids. Isolation, purification and effect on ionic permeability of membranes. European Journal of Biochemistry 133, 689–695.Google Scholar
  41. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. (1993) Myelinated nerve fibres in the CNS. Progress in Neurobiology 43, 85–141.Google Scholar
  42. Ho, T. W., Mckhann, G. M. & Griffin, J. W. (1998) Human autoimmune neuropathies. Annual Review of Neuroscience 21, 187–226.Google Scholar
  43. Hodes, M. E., Pratt, V. M. & Dlouhy, S. R. (1993) Genetics of Pelizaeus-Merzbacher disease. Developmental Neuroscience 15, 383–394.Google Scholar
  44. Hohlfeld, R. (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives [invited review]. BRAIN 120, 865–916.Google Scholar
  45. Inoue, K., Osaka, H., Imaizumi, K., Nezu, A., Takanashi, J., Arii, J., Murayama, K., Ono, J., Kikawa, Y., Mito, T., Shaffer, L. G. & Lupski, J. R. (1999) Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: Molecular mechanism and phenotypic manifestations. Annals of Neurology 45, 624–632.Google Scholar
  46. Kaplan, M. R., Meyer-franke, A., Lambert, S., Bennett, V., Duncan, I. D., Levison, S. R. & Barres, B. A. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.Google Scholar
  47. Kidd, D., Thorpe, J. W., Thompson, A. J., Kendall, B. E., Moseley, I. F., Macmanus, D. G., Mcdonald, W. I. & Miller, D. H. (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43, 2632–2637.Google Scholar
  48. Kirkpatrick, L. L. & Brady, S. T. (1994) Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells. Journal of Neuroscience 14, 7440–7450.Google Scholar
  49. Kitagawa, K., Sinoway, M. P., Yang, C., Gould, R. M. & Colman, D. R. (1993) A proteolipid protein gene family: expression in sharks and rays and possible evolution from an ancestral gene encoding a poreforming polypeptide. Neuron 11, 433–448.Google Scholar
  50. Koo, E. H., Sisodia, S. S., Archer, D. R., Martin, L. J., Weidemann, A., Beyreuther, K., Fischer, P., Masters, C. L. & Price, D. L. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proceedings of the National Academy of Sciences (USA) 87, 1561–1565.Google Scholar
  51. Lai, C., Brow, M. A., Nave, K.-A., Noronha, A. B., Quarles, R. H., Bloom, F. E., Milner, R. J. & Sutcliffe, J. G. (1987) Two forms of 1B236/myelinassociated glycoprotein (MAG), a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proceedings of the National Academy of Sciences (USA) 84, 4337–4341.Google Scholar
  52. Li, C., Tropak, M. B., Gerial, R., Clapoff, S., Abramow-newerly, W., Trapp, B., Peterson, A. & Roder, J. (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369, 747–750.Google Scholar
  53. Li, M., Shibata, A., Li, C., Braun, P. E., McKerracher, L., Roder, J., Kater, S. B. & David, S. (1996) Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. Journal of Neuroscience Research 46, 404–414.Google Scholar
  54. Linington, C. (1998) Experimental animal models. In Immunotherapy in Neuroimmunologic Diseases, (edited by Zhang, J., Hafler, D., Hohlfeld, R. & Miller, A.), pp. 11–28. London: Martin Dunitz.Google Scholar
  55. Lloyd, K. G. (1977) CNS compensation to dopamine neuron loss in Parkinson's disease. Advances in Experimental Medicine and Biology 90, 255–266.Google Scholar
  56. Losseff, N. A., Webb, S. L., O'riordan, J. I., Page, R., Wang, L., Barker, G. J., Tofts, P. S., McDonald, W. I., Miller, D. H. & Thompson, A. J. (1996a) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119, 701–708.Google Scholar
  57. Losseff, N. A., Wang, L., Lai, H. M., Yoo, D. S., Gawne-cain, M. L., Mcdonald, W. I., Miller, D. H. & Thompson, A. J. (1996b) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119, 2009–2019.Google Scholar
  58. Losseff, N. A. & Miller, D. H. (1998) Measures of brain and spinal cord atrophy in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 64, S102–S105.Google Scholar
  59. Low, P. A. & Mcleod, J. G. (1975) Hereditary demyelination neuropathy in the Trembler mouse. Journal of the Neurological Sciences 26, 565–574.Google Scholar
  60. Lublin, F. D. & Reingold, S. C. (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46, 907–911.Google Scholar
  61. Matthews, P. M., Pioro, E., Narayanan, S., De Stefano, N., Fu, L., Francis, G., Antel, J., Wolfson, C. & Arnold, D. L. (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119, 715–722.Google Scholar
  62. Matthews, P. M., De stefano, N., Narayanan, S., Francis, G. S., Wolinsky, J. S., Antel, J. P. & Arnold, D. L. (1998) Putting magnetic resonance spectroscopy studies in context: Axonal damage and disability in multiple sclerosis. Seminars in Neurology 18, 327–336.Google Scholar
  63. Mcfarland, H. F., Frank, J. A., Albert, P. S., Smith, M. E., Martin, R., Harris, J. O., Patronas, N., Maloni, H. & Mcfarlin, D. E. (1992) Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Annals of Neurology 32, 758–766.Google Scholar
  64. Mckerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J. & Braun, P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811.Google Scholar
  65. Mews, I., Bergmann, M., Bunkowski, S., Gullotta, F. & BrÑck, W. (1998) Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Multiple Sclerosis 4, 55–62.Google Scholar
  66. Montag, D., Giese, K. P., Bartsch, U., Martini, R., Lang, Y., BlÑthmann, H., Karthigasan, J., Kirschner, D. A., Wintergerst, E. S., Nave, K.-A., Zielasek, J., Toyka, K. V., Lipp, H.-P. & Schachner, M. (1994) Mice deficient for the myelinassociated glycoprotein show subtle abnormalities in myelin. Neuron 13, 229–246.Google Scholar
  67. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767.Google Scholar
  68. Narayanan, S., Fu, L., Pioro, E., De stefano, N., Collins, D. L., Francis, G. S., Antel, J. P., Matthews, P. M. & Arnold, D. L. (1997) Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Annals of Neurology 41, 385–391.Google Scholar
  69. Njenga, M. K., Murray, P. D., Mcgavern, D., Lin, X., Drescher, K. M. & Rodriguez, M. (1999) Absence of spontaneous central nervous system remyelination in class II-deficient mice infected with Theiler's virus. Journal of Neuropathology and Experimental Neurology 58, 78–91.Google Scholar
  70. Notterpek, L. M. & Rome, L. H. (1994) Functional evidence for the role of axolemma in CNS myelination. Neuron 13, 473–485.Google Scholar
  71. Oppenheimer, D. R. (1978) The cervical cord in multiple sclerosis. Neuropathology and Applied Neurobiology 4, 151–162.Google Scholar
  72. Owens, T. & Sriram, S. (1995) The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurologic Clinics 13, 51–73.Google Scholar
  73. Perkins, S., Aguayo, A. & Bray, G. (1981) Behaviour of Schwann cells from Trembler mouse unmyelinated fibers transplanted into myelinated nerves. Experimental Neurology 71, 515–526.Google Scholar
  74. Prineas, J. W. & Mcdonald, W. I. (1997) Demyelinating diseases. In Greenfield's Neuropathology, 6th ed. (edited by Graham, D. I. & Lantos, P. L.), pp. 813–881. International Society of Neuropathology.Google Scholar
  75. Powell, H. C. & Myers, R. R. (1996) The axon in Guillain-Barr, syndrome: Immune target or innocent bystander? Annals of Neurology 39, 4–5.Google Scholar
  76. Putnam, T. J. (1936) Studies in multiple sclerosis. Archives of Neurology and Psychiatry 35, 1289–1308.Google Scholar
  77. Raine, C. S. (1984) Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Laboratory Investigation 50, 608–635.Google Scholar
  78. Raine, C. S. & Cross, A. H. (1989) Axonal dystrophy as a consequence of long-term demyelination. Laboratory Investigation 60, 714–725.Google Scholar
  79. Ritchie, J. M. (1984) Physiological basis of conduction in myelinated nerve fibers. In Myelin (edited by Morell, P.), pp. 117–146. New York: Plenum Press.Google Scholar
  80. Rivera-quinones, C., Mcgavern, D., Schmelzer, J. D., Hunter, S. F., Low, P. A. & Rodriguez, M. (1998) Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nature Medicine 4, 187–193.Google Scholar
  81. Rodriguez, M., Olezak, E. & Leibowitz, J. (1987) Theiler'smurine encephalomyelitis:Amodel of demyelination and persistence of virus. Critical Reviews in Immunology 7, 325–365.Google Scholar
  82. Rosenbluth, J. (1988) Role of glial cells in the differentiation and function of myelinated axons. International Journal of Developmental Neuroscience 6, 3–24.Google Scholar
  83. Rudick, R., Cohen, J. A., Weinstock-guttman, B., Kinkel, R. P. & Ransohoff, R. M. (1997) Management of Multiple Sclerosis. New England Journal of Medicine 337, 1604–1611.Google Scholar
  84. Sahenk, Z. & Chen, L. (1998) Abnormalities in the axonal cytoskeleton induced by a Connexin32 mutation in nerve xenografts. Journal of Neuroscience Research 51, 174–184.Google Scholar
  85. Sahenk, Z., Chen, L. & Mendell, J. R. (1999) Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Annals of Neurology 45, 16–24.Google Scholar
  86. Salzer, J. L., Holmes, W. P. & Colman, D. R. (1987) The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. Journal of Cell Biology 104, 957–965.Google Scholar
  87. Sanchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A. (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. Journal of Neuroscience 16, 5095–5105.Google Scholar
  88. Scherer, S. (1999) Axonal pathology in demyelinating diseases. Annals of Neurology 45, 6–7.Google Scholar
  89. Scherer, S. S., Xu, Y. T., Nelles, E., Fischbeck, K. & Bone, L. J. (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24, 8–20.Google Scholar
  90. Seitelberger, F. (1995) Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathology 5, 267–273.Google Scholar
  91. Sheikh, K. A., Sun, J., Kawai, H., Crawford, T. O., Proia, R. L., Griffin, J. W. & Schnaar, R. L. (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proceedings of the National Academy of Sciences (USA) 96, 7532–7537.Google Scholar
  92. Sternberger, N. H., Quarles, R. H., Itoyama, Y. & Webster, H. D. (1979) Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin forming cells of developing rats. Proceedings of the National Academy of Sciences (USA) 76, 1510–1514.Google Scholar
  93. Tasaki, I. (1982) Physiology and Electrochemistry of Nerve Fibers. New York: Academic.Google Scholar
  94. Trapp, B. D., Andrews, S. B., Cootauco, C. & Quarles, R. H. (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. Journal of Cell Biology 109, 2417–2426.Google Scholar
  95. Trapp, B. D., Peterson, J., Ransohoff, R. M., Rudick, R., MÖrk, S. & BÖ, L. (1998) Axonal transection in the lesions of multiple sclerosis. New England Journal of Medicine 338, 278–285.Google Scholar
  96. Trapp, B. D., Ransohoff, R. M., Fisher, E. & Rudick, R. (1999) Neurodegeneration in multiple sclerosis: relationship to neurological disability. The Neuroscientist 5, 48–57.Google Scholar
  97. Voyvodic, J. T. (1989) Target size regulates calibre and myelination of sympathetic axons. Nature 342, 430–433.Google Scholar
  98. Waxman, S. G. (1998) Demyelinating diseasesÑnew pathological insights, new therapeutic targets. New England Journal of Medicine 338, 223–225.Google Scholar
  99. Windenbank, A. J., Wood, P., Bunge, R. P. & Dyck, P. J. (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. Journal of Neuroscience 5, 1563–1569.Google Scholar
  100. Yang, L. J.-S., Zeller, C. B., Shaper, N. L., Kiso, M., Hasegawa, A., Shapiro, R. E. & Schnaar, R. L. (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proceedings of the National Academy of Sciences (USA) 93, 814–818.Google Scholar
  101. Yin, X., Crawford, T. O., Griffin, J. W., Tu, P., Lee, V. M.-Y., Li, C., Roder, J. & Trapp, B. D. (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. Journal of Neuroscience 18, 1953–1963.Google Scholar
  102. Yu, M., Nishiyama, A., Trapp, B. D., Tuohy, V. (1996) Interferon-β inhibits progression of relapsingremitting experimental autoimmune encephalomyelitis. Journal of Neuroimmunology 64, 91–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Carl Bjartmar
    • 1
  • Xinghua Yin
    • 1
  • Bruce D. Trapp
    • 1
  1. 1.Department of NeurosciencesLerner Research Institute, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations