Advertisement

Optical and Quantum Electronics

, Volume 31, Issue 9–10, pp 957–963 | Cite as

Asymmetrical off–on switches for crosstalk reduction in switching networks

  • T. Pertsch
  • C. Wächter
Article

Abstract

An off–on switching scheme is introduced which blocks a waveguide path in the passive off-state and transmits the signal in the active on-state. The operating principle is based on the self-diffraction of a narrow guided beam when it escapes from a waveguide with two-dimensional confinement into a region of appropriate length with basically one-dimensional confinement. In particular, a remaining interface of the initial waveguide superimposes reflection, which in sum results in a very efficient asymmetrical blow out of the guided power. In the active on-state, low-loss waveguiding is sustained when an electrode causes an appropriate refractive index change, e.g., due to the thermo-optical effect. Thus, the signal is received in the output waveguide, the identical counterpart of the input guide. The switching behaviour is almost binary with minimal wavelength dependence. This makes the device useful for switching and modulation in a multi-wavelength optical network. For a realistic polymeric waveguide configuration, simulations indicate on-off signal ratios of >30 dB. This satisfies the requirements for crosstalk reduction in switching networks.

crosstalk reduction off-on switches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, R. and C. Tsai. IEEE J. Quantum Electron. 23 2205, 1987.Google Scholar
  2. Haruna, M. and J. Koyama. Electron. Lett. 17 842, 1981.Google Scholar
  3. Hida, Y., H. Onose and S. Imamura. Polymer waveguide thermooptic switch with low electric power consumption at 1:3 µm. IEEE Photon. Technol. Lett. 5 782, 1993.Google Scholar
  4. Huang, T., G. Simonis, V. Chinni, P. Wai and C. Menyuk. Opt. Lett. 19 2107, 1994.Google Scholar
  5. Januar, I., R. Feuerstein, A. Mickelson and J. Sauer. J. Lightwave Technol. 10 1202, 1992.Google Scholar
  6. Khan, M., J. Zucker, T. Chang, N. Sauer and M. Divino. IEEE Photon. Technol. Lett. 6 394, 1994.Google Scholar
  7. Lin, S., W. Feng, J. Powelson, R. Feuerstein, L. Bintz, D. Tomic and A. Mickelson. J. Lightwave Technology 14 2012, 1996.Google Scholar
  8. Murphy, E., T. Murphy, R. Irvin, R. Grencavich, G. Davis and G. Richards. Proc. ECIO, paper EFD5, 1997.Google Scholar
  9. Pennings, E., G.-D. Khoe, M. Smit and T. Staring. IEEE J. Select. Topics Quantum Electron. 2 151, 1996.Google Scholar
  10. Silberberg, Y., P. Perlmutter and J. Baran. Appl. Phys. Lett. 51 1230, 1987.Google Scholar
  11. Soldano, L. and E. Pennings. J. Lightwave Technol. 13 615, 1995.Google Scholar
  12. Takizawa, K. Opt. Lett. 11 818, 1986.Google Scholar
  13. Thurston, R., E. Kapon and Y. Silberberg. Proc. SPIE 836 211, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • T. Pertsch
    • 1
  • C. Wächter
    • 1
  1. 1.Fraunhofer-Institut für Angewandte Optik und FeinmechanikJenaGermany

Personalised recommendations