Glycoconjugate Journal

, Volume 15, Issue 3, pp 209–216 | Cite as

Computational carbohydrate chemistry: what theoretical methods can tell us

  • Robert J Woods

Abstract

Computational methods have had a long history of application to carbohydrate systems and their development in this regard is discussed. The conformational analysis of carbohydrates differs in several ways from that of other biomolecules. Many glycans appear to exhibit numerous conformations coexisting in solution at room temperature and a conformational analysis of a carbohydrate must address both spatial and temporal properties. When solution nuclear magnetic resonance data are used for comparison, the simulation must give rise to ensemble-averaged properties. In contrast, when comparing to experimental data obtained from crystal structures a simulation of a crystal lattice, rather than of an isolated molecule, is appropriate. Molecular dynamics simulations are well suited for such condensed phase modeling. Interactions between carbohydrates and other biological macromolecules are also amenable to computational approaches. Having obtained a three-dimensional structure of the receptor protein, it is possible to model with accuracy the conformation of the carbohydrate in the complex. An example of the application of free energy perturbation simulations to the prediction of carbohydrate-protein binding energies is presented.

conformational analysis molecular dynamics NMR free energy perturbation oligosaccharide polysaccharide GLYCAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McIntire TM, Penner RM, Brant DA (1995) Macromolecules 28: 6375–7.Google Scholar
  2. 2.
    Rice KG, Wu P, Brand L, Lee YC (1991) Biochemistry 30: 6646–55.Google Scholar
  3. 3.
    Stevens ES (1994) Biopolymers 34: 1395–401.Google Scholar
  4. 4.
    Fernández P, Jiménez-Barbero J (1994) J Carbohydr Chem 13: 207–33.Google Scholar
  5. 5.
    Fernández P, Jiménez-Barbero J (1993) Carbohydr Res 248: 15–36.Google Scholar
  6. 6.
    Cumming DA, Carver JP (1987) Biochemistry 26: 6664–76.Google Scholar
  7. 7.
    Wooten EW, Edge CJ, Bazzo R, Dwek RA, Rademacher TW (1990) Carbohydr Res 203: 13–17.Google Scholar
  8. 8.
    Woods RJ (1996) InReviews in Computational Chemistry (Lipkowitz KB, Boyd DB, eds) pp 129–65. New York: VCH Publishers Inc.Google Scholar
  9. 9.
    Melberg S, Rasmussen K (1980) Carbohydr Res 78: 215–24.Google Scholar
  10. 10.
    Bock K, Lemieux RU (1982) Carbohydr Res 100: 63–74.Google Scholar
  11. 11.
    Bock K, Josephson S, Bundle DR (1982) J Chem Soc Perkin Trans II: 59–70.Google Scholar
  12. 12.
    Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao VS (1980) Can J Chem 58: 631–53.Google Scholar
  13. 13.
    Lemieux RU, Bock K (1983) Arch Biochem Biophys 221: 125–34.Google Scholar
  14. 14.
    Paulsen H, Peters T, Sinnwell V, Lebhun R, Meyer B (1984) Liebigs Ann Chem 951–76.Google Scholar
  15. 15.
    Peters T, Meyer B, Stuike-Prill R, Somorjai R, Brisson J-R (1993) Carbohydr Res 238: 49–73.Google Scholar
  16. 16.
    Levery SB (1991) Glycoconjugate J 8: 484–92.Google Scholar
  17. 17.
    Poppe L, Stuike-Prill R, Meyer B, van Halbeek H (1992) J Biomol NMR 2: 109–36.Google Scholar
  18. 18.
    Weimar T, Meyer B, Peters T (1993) J Biomol NMR 3: 399–414.Google Scholar
  19. 19.
    Engelsen SB, Rasmussen K (1993) Int J Biol Macromol 15: 56–62.Google Scholar
  20. 20.
    Stuike-Prill R, Meyer B (1990) Eur J Biochem 194: 903–19.Google Scholar
  21. 21.
    Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B (1995) J Phys Chem 99: 3832–46.Google Scholar
  22. 22.
    Imberty A, Pérez S (1994) Glycobiology 4: 351–66.Google Scholar
  23. 23.
    Glennon TM, Zheng Y-J, LcGrand SM, Shutzberg BA, Merz KM Jr (1994) J Comput Chem 15: 1019–40.Google Scholar
  24. 24.
    Grootenhuis PDJ, Haasnoot CAG (1993) Molec Simulation 10: 75–95.Google Scholar
  25. 25.
    Imberty A, Hardman KD, Carver JP, Pérez S (1991) Glycobiology 1: 631–42.Google Scholar
  26. 26.
    Homans SW (1990) Biochemistry 29: 9110–18.Google Scholar
  27. 27.
    Ha SN, Giammona A, Field M, Brady JW (1988) Carbohydr Res 180: 207–21.Google Scholar
  28. 28.
    Rutherford TJ, Partridge J, Weller CT, Homans SW (1993) Biochemistry 32: 12715–24.Google Scholar
  29. 29.
    Bock K (1983) Pure Appl Chem 55: 605–22.Google Scholar
  30. 30.
    Thogersen H, Lemieux RU, Bock K, Meyer B (1982) Can J Chem 60: 44–57.Google Scholar
  31. 31.
    Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) J Phys Chem 79: 2361–81.Google Scholar
  32. 32.
    Lemieux RU, Koto S (1974) Tetrahedron 30: 1933–44.Google Scholar
  33. 33.
    Rasmussen K (1982) Acta Chem Scand A36: 323–7.Google Scholar
  34. 34.
    Koehler JEH, Saenger W, van Gunsteren WF (1987) Eur Biophys J 15: 197–210.Google Scholar
  35. 35.
    Prabhakaran M, Harvey SC (1987) Biopolymers 26: 1087–96.Google Scholar
  36. 36.
    Clark M, Cramer III RD, Van Opdenbosch N (1989) J Comput Chem 10 982–1012.Google Scholar
  37. 37.
    Hagler AT, Lifson S, Dauber P (1979) J Am Chem Soc 101: 5122–30.Google Scholar
  38. 38.
    Casset F, Hamelryck T, Loris R, Brisson J-R, Tellier C, Dao-Thi M-H, Wyns L, Poortmans F, Pérez S, Imberty A (1995) J Biol Chem 270: 25619–28.Google Scholar
  39. 39.
    Dauchez M, Mazurier J, Montreuil J, Vergoten G (1992) Biochemie 74: 63–74Google Scholar
  40. 40.
    Balaji PV, Qasba PK, Rao VSR (1993) Biochemistry 32: 12599–611.Google Scholar
  41. 41.
    Asensio JL, López R, Fernández-Mayoralas A, Jiménez-Barbero J (1994) Tetrahedron 50: 6417–32.Google Scholar
  42. 42.
    Allinger NL (1977) J Am Chem Soc 99: 8127–34.Google Scholar
  43. 43.
    Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111: 8551–66.Google Scholar
  44. 44.
    Asensio JL, Jimenez-Barbero J (1995) Biopolymers 35: 55–73.Google Scholar
  45. 45.
    Widmalm G, Venable RM (1994) Biopolymers 34: 1079–88.Google Scholar
  46. 46.
    French AD, Miller DP, Aabloo A (1993) Int J Biol Macromol 15: 30–6.Google Scholar
  47. 47.
    Kouwijzer MLCE, van Eijck BP, Kroes SJ, Kroon J (1993) J Comput Chem 14: 1281–9.Google Scholar
  48. 48.
    Koehler JEH, Saenger W, van Gunsteren WF (1988) J Biomolec Struct Dynam 6: 181–97.Google Scholar
  49. 49.
    Kouwijzer MLCE, van Eijck BP, Kooijman H, Kroon J (1995) Acta Cryst Sect B 51: 209–20.Google Scholar
  50. 50.
    Woods RJ, Edge CJ, Wormald MR, Dwek RA (1993) In Complex Carbohydrates in Drug Research (Bock K, Clausen H, Krogsgaard-Larsen P, Kofod H, eds) pp 15–36. Copenhagen: Munksgaard.Google Scholar
  51. 51.
    Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1996) Eur J Biochem (submitted).Google Scholar
  52. 52.
    Stokke BT, Talashek TA, Brant DA (1994) Macromolecules 27: 1124–35.Google Scholar
  53. 53.
    Heiner AP, Sugiyama J, Teleman O (1995) Carbohydr Res 273: 207–23.Google Scholar
  54. 54.
    Ramachandran G, Schlick T (1996) DIMACS Series in Discrete Methematics and Theoretical Computer Science 23: 215–31.Google Scholar
  55. 55.
    Widmalm G, Pastor RW (1992) J Chem Soc 88: 1747–54.Google Scholar
  56. 56.
    Andrew SM, Thomasson KA, Northrup SA (1993) J Am Chem Soc 115: 5516–21.Google Scholar
  57. 57.
    Northrup SH, Thomasson KA, Miller CM (1993) Biochemistry 32: 6613–23.Google Scholar
  58. 58.
    Dwek RA (1995) Science 269: 1234–5.Google Scholar
  59. 59.
    Hart GW (1992) Curr Opin Cell Biol 4: 1017–23.Google Scholar
  60. 60.
    Sharon N, Lis H (1989) Science 246: 227–46.Google Scholar
  61. 61.
    Rademacher TW, Parekh RB, Dwek RA (1988) Ann Rev Biochem 57: 785–838.Google Scholar
  62. 62.
    Varki A (1993) Glycobiology 3: 97–130.Google Scholar
  63. 63.
    Springer TA, Lasky LA (1991) Nature 349: 196–7.Google Scholar
  64. 64.
    Quiocho FA (1986) Ann Rev Biochem 55: 287–315.Google Scholar
  65. 65.
    Lemieux RU (1989) Chem Soc Rev 18: 347–74.Google Scholar
  66. 66.
    Chervenak MC, Toone EJ (1994) J Am Chem Soc 116: 10533–9.Google Scholar
  67. 67.
    Chervenak MC, Toone EJ (1995) Biochemistry 34: 5685–95.Google Scholar
  68. 68.
    Mandal DK, Bhattacharyya L, Koenig SH, Brown RD III, Oscarson S, Brewer CF (1994) Biochemistry 33: 1157–62.Google Scholar
  69. 69.
    Mandal DK, Kishore N, Brewer CF (1994) Biochemistry 33: 1149–56.Google Scholar
  70. 70.
    Schwarz FP, Puri KD, Bhat RG, Surolia A (1993) J Biol Chem 268: 7668–77.Google Scholar
  71. 71.
    Ramkumar R, Surolia A, Podder SK (1995) Biochem J 308: 237–41.Google Scholar
  72. 72.
    Evans SV, Sigurskjold BW, Jennings HJ, Brisson J-R, To R, Tse WC, Altman E, Frosch M, Weisgerber C, Kratzin HD, Klebert S, Vaesen M, Bitter-Suermann D, Rose DR, Young NM, Bundle DR (1995) Biochemistry 34: 6737–44.Google Scholar
  73. 73.
    Bundle DR, Eichler E, Gidney MA, Meldal M, Ragauskas A, Sigurskjold BW, Sinnot B, Watson DC, Yaguchi M, Young NM (1994) Biochemistry 33: 5172–82.Google Scholar
  74. 74.
    Ito W, Kurosawa Y (1993) J Biol Chem 268: 16639–47.Google Scholar
  75. 75.
    Varki A (1992) Curr Opin Cell Biol 4: 257–66.Google Scholar
  76. 76.
    Butcher EC (1991) Cell 67: 1033–6.Google Scholar
  77. 77.
    Weis WI, Drickamer K, Hendrickson WA (1992) Nature 360: 127–34.Google Scholar
  78. 78.
    Bourne Y, Rougé P, Cambillau C (1992) J Biol Chem 267: 197–203.Google Scholar
  79. 79.
    Williams BA, Chervenak MC, Toone EJ (1992) J Biol Chem 267: 22907–11.Google Scholar
  80. 80.
    Sigurskjold BW, Bundle DR (1992) J Biol Chem 267: 8371–6.Google Scholar
  81. 81.
    Jiménez-Barbero J, Junquera E, Martín-Pastor M, Sharma S, Vicent C, Penadés S (1995) J Am Chem Soc 117: 11198–204.Google Scholar
  82. 82.
    Lemieux RU (1992) Carbohydrate Antigens ACS Symposium Series # 519 6–18.Google Scholar
  83. 83.
    Pearlman DA, Kollman PA (1989) In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (van Gunsteren WF, Weiner PK, eds) pp 101–19. The Netherlands: ESCOM.Google Scholar
  84. 84.
    Singh UC, Brown FK, Bash PA, Kollman PA (1987) J Am Chem Soc 109: 1607–14.Google Scholar
  85. 85.
    van Gunsteren F (1989) In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (van Gunsteren WF, Weiner PK, eds) pp 27–59 The Netherlands: ESCOM.Google Scholar
  86. 86.
    Straatsma TP (1996) In Reviews in Computational Chemistry (Boyd DB, Lipkowitz K, eds) New York: VCH, pp 81–127.Google Scholar
  87. 87.
    Mizushima N, Spellmeyer D, Hirono S, Pearlman D, Kollman P (1991) J Biol Chem 266: 11801–9.Google Scholar
  88. 88.
    Miyamoto S, Kollman P (1993) Proteins 16: 226–45.Google Scholar
  89. 89.
    Woods RJ, Pathiaseril A (1996) (unpublished data).Google Scholar
  90. 90.
    Wessels MR, Pozsgay V, Kasper DL, Jennings HJ (1987) J Biol Chem 262: 8262–7.Google Scholar
  91. 91.
    Peters T, Pinto BM (1996) Curr Opin Struct Biol 6: 710–20.Google Scholar
  92. 92.
    Woods RJ (1995) Curr Opin Struct Biol 5: 591–8.Google Scholar
  93. 93.
    Pérez S, Imberty A, Carver JP (1994) Advan Comput Biol 1: 147–202.Google Scholar
  94. 94.
    French AD, Brady JW (1990) Computer Modeling of Carbohydrate Molecules (American Chemical Society Washington DC).Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Robert J Woods
    • 1
  1. 1.Complex Carbohydrate Research Center, Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations