Optical and Quantum Electronics

, Volume 30, Issue 5–6, pp 385–396 | Cite as

Vectorial wave-matching mode analysis of integrated optical waveguides

  • M. Lohmeyer


For mode fields of integrated optical waveguides with piecewise constant and rectangular permittivity profile, Maxwell's equations reduce to the two-dimensional Helmholtz wave equation, supplemented by continuity requirements on the boundaries between different media. Two basic components of the mode field are expanded into factorizing harmonic or exponential functions, separately on each rectangular region. We determine approximations for guided modes and propagation constants by means of a minimization procedure based on a least squares expression for the mismatch in the continuity requirements. Results for the hybrid mode fields of typical sample waveguides classify this approach as competitive with and superior to alternative methods for vectorial mode analysis, although some open questions remain.


Wave Equation Exponential Function Mode Analysis Typical Sample Basic Component 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Chiang, Opt. Quantum Electron. 26 (1994) 113.Google Scholar
  2. 2.
    C. Vassallo, Opt. Quantum Electron. 29 (1997) 95.Google Scholar
  3. 3.
    M. Lohmeyer, Opt. Quantum Electron. 29 (1997) 907.Google Scholar
  4. 4.
    P. LÜsse, P. Stuwe, J. SchÜle and H.-G Unger, J. Lightwave Technol. 12 (1994) 487.Google Scholar
  5. 5.
    B. M. A. Rahman and J. B. Davies, IEE Proc. 132 (1985) p. 349.Google Scholar
  6. 6.
    U. Rogge and R. Pregla, J. Opt. Soc. Am. B 8 (1991) 459.Google Scholar
  7. 7.
    A. S. SudbØ, Pure Appl. Opt. 2 (1993) 211.Google Scholar
  8. 8.
    A. S. SudbØ, J. Lightwave Technol. 10 (1992) 418.Google Scholar
  9. 9.
    M. Bressan and P. Gamba, IEEE Microwave Guided Wave Lett. 4 (1994) 3.Google Scholar
  10. 10.
    P. LÜsse, Numerische Entwurfswerkzeuge für optische Wellenleiterbauelemente. (VDI-Verlag, Düsseldorf, 1997) VDI Fortschritts-Berichte, Reihe 20: Rechnerunterstü tzte Verfahren, Nr. 239.Google Scholar
  11. 11.
    H. Noro and T. Nakayama, J. Lightwave Technol. 14 (1996) 1546.Google Scholar
  12. 12.
    T. Rozzi, G. Cerri, M. N. Husain and L. Zappelli, IEEE Trans. Microwave Theory Tech. 39 (1991) 247.Google Scholar
  13. 13.
    P. LÜsse, K. Ramm and H.-G. Unger, Opt. Quantum Electron. 29 (1997) 115.Google Scholar
  14. 14.
    K. Mertens, B. Scholl and H. J. Schmitt, J. Lightwave Technol. 13 (1995) 2087.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Lohmeyer
    • 1
  1. 1.Department of PhysicsUniversity of OsnabrückOsnabrückGermany

Personalised recommendations