Optical and Quantum Electronics

, Volume 31, Issue 5–7, pp 451–468 | Cite as

Micro-electro-mechanical deformable mirrors for aberration control in optical systems

  • Michael C. Roggemann
  • Victor M. Bright
  • Byron M. Welsh
  • William D. Cowan
  • Max Lee


Controlling optical aberrations is one of the enduring problems in optics. Recent advances in adaptive optics for astronomical applications have shown the promise of adaptive optics technology for controlling aberrations. Micro-electro-mechanical deformable mirrors (MEM-DMs) offer an alternative to conventional adaptive optics which, due to the inexpensive nature of MEM-DM technology, will enable a wide range of commercial and scientific applications for optical wave front control. In this paper we describe MEM-DMs, present results of modelling the performance of an MEM-DM for optical aberration control, and present results of experiments to verify that MEM-DMs can control optical aberrations.

aberration control deformable mirrors micro-electro-mechanical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Laikin, M. Lens Design, Second edn. Marcel Dekker, Inc., New York, 1995.Google Scholar
  2. Chanan, G., J. Nelson, T. Mast, P. Wizinowich and B. Schaefer. The W. M. Keck telescope phasing camera system. In Proceedings of the SPIE on Instrumentation in Astronomy VIII, Vol. 2198, 1139–1150, 1994.Google Scholar
  3. Dooling, D. Beyond Hubble. The Institute, IEEE monthly newsletter, p. 1, June 1996.Google Scholar
  4. Roggemann M.C. and B.M. Welsh. Imaging through turbulence, CRC Press, Boca Raton, Florida, 1996.Google Scholar
  5. Fried, D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56 1372–1379, 1966.Google Scholar
  6. Fante, R.L. Electromagnetic beam propagation in turbulence media. Proc. IEEE 63 1669–1692, 1975.Google Scholar
  7. Lee R.W. and J.C. Harp. Weak scattering in random media, with applications to remote probing. Proc. IEEE 57 375–406, 1969.Google Scholar
  8. Fried, D.L. Optical heterodyne detection of an atmospherically distorted signal wave front. Proc. IEEE 55 57–67, 1967.Google Scholar
  9. Beckers, J.M. Adaptive optics for astronomy: principles, performance, and applications. Annu. Rev. Astron. Astrophys. 31 13–62, 1993.Google Scholar
  10. Roggemann, M.C., B.M. Welsh and R.Q. Fugate. Improving the resolution of ground-based telescopes. Rev. Mod. Phys. 69 437–505, 1997.Google Scholar
  11. Ealey M.A. and J.A. Wellman. Deformable mirrors: design fundamentals, key performance speci®cations, and parametric trades. In Proceedings of the SPIE on Active and Adaptive Optical Components, Vol. 1543, 36–51, 1991.Google Scholar
  12. Ealey M.A. and J.F. Washeba. Continuous facesheet low voltage deformable mirrors. Opt. Eng. 29 1191–1198, 1990.Google Scholar
  13. Acton D.S. and R.C. Smithson. Solar imaging with a segmented adaptive mirror. Appl. Opt. 31 3161–3169, 1992.Google Scholar
  14. Hornbeck, L.J. 128 × 128 deformable mirror device. IEEE Transactions on Electron Devices Ed-30 539–545, 1983.Google Scholar
  15. Miller, L.M., M.L. Agronin, R.K. Bartman, W.J. Kaiser, T.W. Kenny, R.L. Norton and E.C. Vote. Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications. In Proceedings of the SPIE on Space Astronomical Telescopes and Instruments II, Vol. 1993, 421–430, 1977.Google Scholar
  16. Krishnamoorthy, R., T. Bifano and G. Sandri. Statistical performance evaluation of electrostatic micro actuators for a deformable mirror. In Proceedings of the SPIE, Vol. 2881, 35–44, 1996.Google Scholar
  17. Krishnamoorthy R. and T. Bifano. Mems arrays for deformable mirrors. In Proceedings of the SPIE, Vol. 2641, 96–104, 1995.Google Scholar
  18. Comtois, J.H., V.M. Bright, S.C. Gustafson and M.A. Michalicek. Implementation of hexagonal micromirror arrays as phase-mostly spatial light modulators. In Proceedings of the SPIE on Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, Vol. 2641, 76–87, 1995.Google Scholar
  19. Michalicek, M.A., V.M. Bright and J.H. Comtois. Design, fabrication, modeling and testing of a surface micromachined device. In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, 1995.Google Scholar
  20. Lin, T.H. Implementation and characterization of a flexure beam micromechanical spatial light modulator. Opt. Eng. 33 3643–3648, 1994.Google Scholar
  21. Rhoadarmer, T.A., V.M. Bright, B.M. Welsh, S.C. Gustafson and T.H. Lin. Interferometric characterization of the flexure-beam micromirror device. In Proceedings of the SPIE on Integrated Optics and Microstructures II, Vol. 2291, 13–23, 1995.Google Scholar
  22. Roggemann, M.C., V.M. Bright, B.M. Welsh, S.R. Hick, P.C. Roberts, W.D. Cowan and J.H. Comtois. Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results. Opt. Eng. 36 1326–1338, 1997.Google Scholar
  23. Vdovin, G., S. Middelhoek and L. Sarro. Deformable mirror display with continuous reflecting surface micromachined in silicon. In Proceedings of the IEEE Micro Electro Mechanical Systems, 61–64, 1995.Google Scholar
  24. Vdovin G. and P.M. Sarro. Flexible mirror micromachined in silicon. Appl. Opt. 34 2968–2972, 1995.Google Scholar
  25. Vdovin, G., S. Middelhoek and P.M. Sarro. Thin-film free-space optical components micromachined in silicon. In Digest of IEEE/LEOS 1996 Summer Topical Meetings, Keystone, Co, 5–6, 1996.Google Scholar
  26. Clark, R., J. Karpinsky, G. Borek and E. Johnson. High speed interferometric device for real time correction of aero-optic effects. In 26th AIAA Plasmadynamics and Lasers Conference, paper AIAA 95-1984, 1995.Google Scholar
  27. Smith, W.J., Modern Optical Design: The Design of Optical Systems, McGraw-Hill, New York, Second edn., 1990.Google Scholar
  28. Goodman, J.W. Introduction to Fourier Optics, McGraw-Hill Book, New York, 1968.Google Scholar
  29. Oppenheim, A.V., A.S. Willsky and S.H. Nawab. Signals and Systems, Second edn. Prentice Hall, Upper Saddle River, NJ, 1997.Google Scholar
  30. Gonzalez R.C. and R.E. Woods. Digital Image Processing, Reading, Addison–Wesley, Massachusetts, 1993.Google Scholar
  31. Marion J.B. and M.A. Heald. Classical Electromagnetic Radiation, Second edn. Academic Press, Orlando, 1980.Google Scholar
  32. Born M. and E. Wolf. Principles of Optics. Pergamon Press, New York, 1964.Google Scholar
  33. Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, New York, 1978.Google Scholar
  34. Osterberg, P.M., R.K. Gupta, J.R. Gilbert and S.D. Senturia. Quantitative models for the measurement of residual stress, Poisson ratio, and Young's modulus using electrostatic pull-in of beams and diaphrams. Technical Digest, Solid State Sensor and Actuator Workshop, Hilton Head, SC, 184–188, 1994.Google Scholar
  35. Hick, S. Demonstrating optical aberration correction with a mems micro-mirror device. Master's thesis, Graduate School of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB OH, December 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael C. Roggemann
    • 1
  • Victor M. Bright
    • 2
  • Byron M. Welsh
    • 3
  • William D. Cowan
    • 4
  • Max Lee
    • 4
  1. 1.Michigan TechnologicalUniversity, Dept. of Electrical EngineeringHoughton
  2. 2.Department of Mechanical EngineeringUniversity of ColoradoBoulder
  3. 3.Mission Research Corp.Dayton
  4. 4.Department of Electrical and Computer EngineeringAir Force Institute of TechnologyWright-Patterson AFB

Personalised recommendations