Advertisement

Molecular and Cellular Biochemistry

, Volume 199, Issue 1–2, pp 125–137 | Cite as

Poly(ADP-ribosylation) and apoptosis

  • A. Ivana Scovassi
  • Guy G. Poirier
Article

Abstract

Poly(ADP-ribosylation) is a post-translational modification playing a relevant role in DNA damage recovery, DNA replication and viral integration. Several reports also suggest a modulation of this process during cell death by apoptosis. The aim of this review is to discuss the possible involvement of poly(ADP-ribosylation) during apoptosis, by dealing with general considerations on apoptosis, and further examining the correlation between NAD consumption and cell death, the regulation of poly(ADP-ribose) metabolism in apoptotic cells, the effect of poly(ADP-ribose) polymerase inhibition on cell death occurrence and the use of enzyme cleavage as a marker of apoptosis. Finally, the future prospects of the research in this area will be addressed.

apoptosis ADP-ribosylation caspases PARP PARG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellis R, Yuan J, Horvitz HR: Mechanisms and functions of cell death. Ann Rev Cell Biol 7: 663–698, 1991Google Scholar
  2. 2.
    Vaux DL, Haecker C, Strasser A: An evolutionary perspective on apoptosis. Cell 76: 777–781, 1994Google Scholar
  3. 3.
    Schwartz LM: The faces of death. Cell Death Differ 2: 83–85, 1995Google Scholar
  4. 4.
    Zakeri Z, Bursch W, Tenniswood M, Lockshin RA: Cell death: Programmed, apoptosis, necrosis or other? Cell Death Differ 2: 87–96, 1995Google Scholar
  5. 5.
    Wertz IE, Hanley MR: Diverse molecular provocation of programmed cell death. Trends Biochem Sci 21: 359–364, 1996Google Scholar
  6. 6.
    Wyllie AH, Kerr JF, Currie AR: Cell death: The significance of apoptosis. Int Rev Cytol 68: 251–307, 1980Google Scholar
  7. 7.
    Wyllie AH: Cell death. Int Rev Cytol 17(Suppl): 755–785, 1987Google Scholar
  8. 8.
    Lockshin RA, Williams CM: Programmed cell death: Cytology of degeneration in the intersegmental muscles of the silkmoth. J Insect Physiol 11: 123–133, 1965Google Scholar
  9. 9.
    Schwartz LM, Smith S, Jones MEE, Osborne BA: Do all programmed cell death occur via apoptosis? Proc Natl Acad Sci USA 90: 980–984, 1993Google Scholar
  10. 10.
    Kerr JFR, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972Google Scholar
  11. 11.
    Arends MJ, Morris RG, Wyllie AH: Apoptosis: Mechanisms and roles in pathology. Int Rev Exp Pathol 32: 223–254, 1991Google Scholar
  12. 12.
    Williams GT, Smith CA, McCarthy NJ, Grimes LA: Apoptosis: Final control point in biology. Trends Cell Biology 2: 263–267, 1992Google Scholar
  13. 13.
    Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell 88: 347–354, 1997Google Scholar
  14. 14.
    Williams GT: Programmed cell death: apoptosis and oncogenes. Cell 65: 1097–1098, 1991Google Scholar
  15. 15.
    Kerr JFR, Winterford CM, Harmon BV: Apoptosis. Its significance in cancer and cancer therapy. Cancer 73: 2013–2026, 1994Google Scholar
  16. 16.
    Hoffman B, Liebermann DA: Molecular controls of apoptosis: Differentiation/growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive & negative regulators. Oncogene 9: 1807–1812, 1994Google Scholar
  17. 17.
    Sen S, D'Incalci M: Apoptosis: Biochemical events and relevance to cancer chemotheraphy. FEBS Lett 307: 122–127, 1992Google Scholar
  18. 18.
    Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F: Features of apoptotic cells by flow cytometry. Cytometry 13: 795–808, 1992Google Scholar
  19. 19.
    Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F: Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry 27: 1–20, 1997Google Scholar
  20. 20.
    Cohen JJ, Sun X, Snowden RT, Dinsdale D, Skilleter DN: Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286: 331–334, 1992Google Scholar
  21. 21.
    Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M: Apoptotic death in epithelial cells: Cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12: 3679–3684, 1993Google Scholar
  22. 22.
    Tomei LD, Shapiro JP, Cope FO: Apoptosis in C3H/10T1/2 mouse embryonic cells: Evidence for internucleosomal DNA modification in the absence of double-strand cleavage. Proc Natl Acad Sci USA 90: 853–857, 1993Google Scholar
  23. 23.
    Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501, 1992Google Scholar
  24. 24.
    Barinaga M: Forging the path to cell death. Science 273: 735–737, 1996Google Scholar
  25. 25.
    Kumar S: ICE-like proteases in apoptosis. TIBS 20: 198–203, 1996Google Scholar
  26. 26.
    Porter AG, Ng P, Jänicke RU: Death substrates come alive. BioEssays 19: 501–507, 1997Google Scholar
  27. 27.
    Martin LM, Earnshaw WC: Apoptosis: Alive and kicking in 1997. Trends Cell Biol 7: 111–114, 1997Google Scholar
  28. 28.
    Cohen GM: ICE-like proteases (caspases): The executioners of apoptosis. Biochemical J 326: 1–16, 1997Google Scholar
  29. 29.
    Carson DA, Seto S, Wasson B, Carrera CJ: DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 164: 273–281, 1986Google Scholar
  30. 30.
    Berger NA: Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101: 4–15, 1985Google Scholar
  31. 31.
    Wintersberger U, Wintersberger E: Poly(ADP-ribosyl)ation. Cellular emergency reactions? FEBS Lett 188: 189–191, 1985Google Scholar
  32. 32.
    Tanizawa A, Kubota M, Hashimoto H, Shimizu T, Takimoto T, Kitoh T, Akiyama Y, Mikawa H: VP-16-induced nucleotide pool changes and poly(ADP-ribose)synthesis: The role of VP-16 in interphase death. Exp Cell Res 185: 237–246, 1989Google Scholar
  33. 33.
    Wright SC, Wei QS, Kinder DH, Larrick JW: Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of 24-kDa apoptotic protease and DNA fragmentation. J Exp Med 183: 463–471, 1996Google Scholar
  34. 34.
    Murray MF, Nghiem M, Srivasan A: HIV infection decreases intracellular nicotinamide adenine dinucleotide. Biochem Biophys Res Comm 212: 126–131, 1995Google Scholar
  35. 35.
    Whitacre CM, Hashimoto H, Tsai M-L, Chatterjee S, Berger SJ, Berger NA: Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res 55: 3697–3701, 1995Google Scholar
  36. 36.
    Coppola S, Nosseri C, Maresca V, Ghibelli L: Different basal NAD levels determine opposite effects of poly(ADP-ribosyl)polymerase inhibitors on H2O2-induced apoptosis. Exp Cell Res 221: 462–469, 1995Google Scholar
  37. 37.
    Bernardi R, Negri C, Donzelli M, Guano F, Torti M, Prosperi E, Scovassi AI: Activation of poly(ADP-ribose) polymerase in apoptotic human cells. Biochimie 77: 378–384, 1995Google Scholar
  38. 38.
    McConkey DJ, Orrenius S, Jondal M: Cellular signalling in programmed cell death (apoptosis). Immunol Today 11: 120–121, 1990Google Scholar
  39. 39.
    Gaido ML, Cidlowski JA: Identification, purification and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. J Biol Chem 266: 18580–18585, 1991Google Scholar
  40. 40.
    Barry MA, Eastman A: Identification of deoxyribonuclease I as an endonuclease involved in apoptosis. Arch Biochem Biophys 300: 440–450, 1993Google Scholar
  41. 41.
    Peitsch MC, Mueller C, Tschopp J: DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res 21: 4206–4209, 1993Google Scholar
  42. 42.
    Torriglia A, Chaudun E, Chany-Fournier F, Jeanny JC, Courtois Y, Counis MF: Involvement of DNase II in nuclear lens cell differentiation. J Biol Chem 270: 28579–28585, 1995Google Scholar
  43. 43.
    Shimizu T, Kubota M, Tanizawa A, Sano H, Kasai Y, Hashimoto H, Akiyama Y, Mikawa H: Inhibition of both etoposide-induced fragmentation and activation of poly(ADP-ribose)synthesis by zinc ion. Biochem Biophys Res Commun 169: 1172–1177, 1990Google Scholar
  44. 44.
    Negri C, Donzelli M, Bernardi R, Rossi L, Bürkle A, Scovassi AI: Multiparametric staining to identify apoptotic human cells. Exp Cell Res 234: 174–177, 1997Google Scholar
  45. 45.
    Donzelli M, Negri C, Mandarino A, Rossi L, Prosperi E, Frouin I, Bernardi R, Bürkle A, Scovassi AI: Poly(ADP-ribose) synthesis: A useful parameter to identify apoptotic cells. Histochem J 29: 1–7, 1997Google Scholar
  46. 46.
    Küpper J-H, de Murcia G, Bürkle A: Inhibition of poly(ADPribosyl) ation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells. J Biol Chem 265: 18721–18724, 1990Google Scholar
  47. 47.
    Bürkle A, Chen G, Küpper J-H, Grube K, Zeller WJ: Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis 14: 559–561, 1993Google Scholar
  48. 48.
    Küpper J-H, van Gool L, Müller M, Bürkle A: Detection of poly(ADPribose) polymerase and its reaction product poly(ADP-ribose) by immunocytochemistry. Histochem J 28: 391–395, 1996Google Scholar
  49. 49.
    Rosenthal DS, Ding R, Simbulan-Rosenthal CMG, Vaillancourt JP, Nicholson DW, Smulson ME: Intact cell: Evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 232: 313–321, 1997Google Scholar
  50. 50.
    Rosenthal DS, Ding R, Simbulan-Rosenthal CMG, Cherney B, Vanek P, Smulson M: Detection of DNA breaks in apoptotic cells utilizing the DNA binding domain of poly(ADP-ribose) polymerase with fluorescence microscopy. Nucl Acids Res 25: 1437–1441, 1997Google Scholar
  51. 51.
    Grassilli E, Carcereri de Prati A, Monti D, Troiano L, Menegazzi M, Barbieri D, Franceschi C, Suzuki H: Studies of the relationship between cell proliferation and cell death. II. Early gene expression during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes. Biochem Biophys Res Commun 188: 1261–1266, 1992Google Scholar
  52. 52.
    Negri C, Bernardi R, Braghetti A, Astaldi Ricotti GCB, Scovassi AI: The effect of the chemotherapeutic drug VP-16 on poly(ADP-ribosylation) in apoptotic HeLa cells. Carcinogenesis 14: 2559–2564, 1993Google Scholar
  53. 53.
    Guano F, Bernardi R, Negri C, Donzelli M, Prosperi E, Astaldi Ricotti GCB, Scovassi AI: Dose-dependent zinc inhibition of DNA ladder in apoptotic HeLa cells regulates the activity of poly(ADP-ribose) polymerase and does not protect from death induced by VP-16. Cell Death Differ 1: 101–107, 1994Google Scholar
  54. 54.
    Negri C, Bernardi R, Donzelli M, Prosperi E, Scovassi AI: Sequence of events leading to apoptosis in long term cultured cells. Cell Death Differ 3: 425–430, 1996Google Scholar
  55. 55.
    Scovassi AI, Stefanini M, Bertazzoni U: Catalytic activities of human poly(ADP-ribose)polymerase from normal and mutagenized cells detected after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 259: 10963–10967, 1984Google Scholar
  56. 56.
    Scovassi AI, Denegri M, Donzelli M, Rossi L, Bernardi R, Mandarino A, Frouin I, Negri C: Poly(ADP-ribose) synthesis in cells undergoing apoptosis: An attempt to face death before PARP degradation. Eur J Histochem 4: 251–258, 1998Google Scholar
  57. 57.
    Yoon YS, Kim JW, Wang KW, Kim YS, Choi KK, O'Joe C: Poly(ADPribosyl) ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis. J Biol Chem 271: 9129–9134, 1996Google Scholar
  58. 58.
    Bernardi R, Rossi L, Poirier GG, Scovassi AI: Analysis of poly(ADPribose) glycohydrolase activity in nuclear extracts from mammalian cells. Biochim Biophys Acta 1338: 60–68, 1997Google Scholar
  59. 59.
    Lin W, Amé J-C, Aboul-Ela N, Jacobson EL, Jacobson MK: Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 272: 11895–11901, 1997Google Scholar
  60. 60.
    Maruta H, Matsumura N, Tanuma S: Role of (ADP-ribose)n catabolism in DNA repair. Biochem Biophys Res Commun 236: 265–269, 1997Google Scholar
  61. 61.
    Heller B, Wang Z-Q, Wagner EF, Radons J, Bürkle A, Fehsel K, Burkart V, Kolb H: Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem 270: 11176–11180, 1995Google Scholar
  62. 62.
    Tanizawa A, Kubota M, Takimoto T, Shimizu T, Takimoto T, Kitoh T, Akiyama Y, Mikawa H: Prevention of adriamycin induced interphase death by 3-aminobenzamide and nicotinamide in a human promyelocytic leukemia cell line. Biochem Biophys Res Commun 144: 1031–1036, 1987Google Scholar
  63. 63.
    Bertrand R, Solary E, Jenkins J, Pommier Y: Apoptosis and its modulation in human promyelocytic HL-60 cells treated with DNA topoisomerase I and II inhibitors. Exp Cell Res 207: 388–397, 1993Google Scholar
  64. 64.
    Venkatachalam S, Denissenko MF, Alvi N, Wani AA: Rapid activation of apoptosis in human proleukemic cells by (±)-anti-benzo(a)pyrene diol epoxide induced DNA damage. Biochem Biophys Res Commun 197: 722–729, 1993Google Scholar
  65. 65.
    Kuo ML, Chau YP, Wang JH, Shiah S-G: Inhibitors of poly(ADPribose) polymerase block nitric oxide-induced apoptosis but not differentiation in human leukemia HL-60 cells. Biochem Biophys Res Commun 219: 502–508, 1996Google Scholar
  66. 66.
    Wright SC, Kumar P, Tam AW, Shen N, Varma M, Larrick JW: Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem 48: 344–355, 1992Google Scholar
  67. 67.
    Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM: Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 98: 2050–2059, 1997Google Scholar
  68. 68.
    Ghibelli L, Nosseri C, Oliverio S, Piacentini M, Autuori F: Cycloheximide can rescue heat-shocked L cells from death by blocking stress-induced apoptosis. Exp Cell Res 201: 436–443, 1992Google Scholar
  69. 69.
    Malorni W, Rivabene R, Straface E, Rainaldi G, Monti D, Salvioli S, Cossarizza A, Franceschi C: 3-aminobenzamide protects cells from UV-B-induced apoptosis by acting on cytoskeleton and substrate adhesion. Biochem Biophys Res Commun 207: 715–724, 1995Google Scholar
  70. 70.
    Yamamoto K, Tsukidate K, Farber JL: Differing effects of the inhibition of 3-aminobenzamide on the course of oxidative cell injury in hepatocytes and fibroblasts. Bioc Pharmacol 46: 483–491, 1993Google Scholar
  71. 71.
    Nosseri C, Coppola S, Ghibelli L: Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp Cell Res 212: 367–373, 1994Google Scholar
  72. 72.
    Lassota P, Kazimierczuk Z, Darzynkiewicz Z: Apoptotic death of lymphocytes upon treatment with 2-chloro-2'-deoxyadenosine (2-CdA). Arch Immunol Ther Exp 42: 17–23, 1994Google Scholar
  73. 73.
    Watson AJ, Askew JN, Benson RS: Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterol 109: 472–482, 1995Google Scholar
  74. 74.
    Szabó C, Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL: Endothelial disfunction in a rat model of endotoxic shock. J Clin Invest 100: 723–735, 1997Google Scholar
  75. 75.
    Ceruti S, Barbieri D, Veronese E, Cattabeni F, Cossarizza A, Giammarioli AM, Malorni W, Franceschi C, Abbracchio MP: Different pathways of apoptosis revealed by 2-chloro-adenosine and deoxy-D-ribose in mammalian astroglial cells. J Neurosci Res 47: 372–383, 1997Google Scholar
  76. 76.
    Hoshino J, Koeppel C, Westhäuser E: 3-aminobenzamide enhances dexamethasone-mediated mouse thymocyte depletion in vivo: Implication for a role of poly ADP-ribosylation in the negative selection of immature thymocytes. Biochim Biophys Acta 1201: 516–522, 1994Google Scholar
  77. 77.
    Wakade AR, Przywara DA, Palmer KC, Kulkarni JS, Wakade TD: Deoxynucleoside induces neuronal apoptosis independent of neurotrophic factors. J Biol Chem 270: 17986–17992, 1995Google Scholar
  78. 78.
    Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D, de Murcia G, Ménissier de Murcia J: A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci USA 92: 4753–4757, 1995Google Scholar
  79. 79.
    Ding R, Pommier Y, Kang VH, Smulson M: Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J Biol Chem 267: 12804–12812, 1992Google Scholar
  80. 80.
    Ding R, Smulson M: Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influences on genome stability, chromatin organization, and carcinogen cytotoxicity. Cancer Res 54: 4627–4634, 1994Google Scholar
  81. 81.
    Simbulan-Rosenthal CMG, Rosenthal DS, Ding R, Jackman J, Smulson ME: Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: Influence on genomic stability, chromatin organization, DNA repair, and DNA replication. Progr Nucl Acid Res 55: 135–156, 1996Google Scholar
  82. 82.
    Wang Z-Q, Auer B, Sting L, Berghammer H, Haidacher D, Schweiger M, Wagner EF: Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520, 1995Google Scholar
  83. 83.
    Ménissier de Murcia J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Waltzinger C, Chambon P, de Murcia G: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303–7307, 1997Google Scholar
  84. 84.
    Agarwal ML, Agarwal A, Taylor WR, Wang Z-Q, Wagner EF, Stark GR: Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene 15: 1035–1041, 1997Google Scholar
  85. 85.
    Eliasson MJL, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang Z-Q, Dawson TM, Snyder SH, Dawson VL: Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med 3: 1089–1095, 1997Google Scholar
  86. 86.
    Jacobs H, Fukita Y, van der Horst GTJ, de Boer J, Weeda G, Essers J, de Wind N, Engelward BP, Samson L, Verbeek S, Ménissier de Murcia J, de Murcia G, te Riele H, Rajewsky K: Hypermutation of immunoglobulin genes in memory B cells of DNA-repair-deficient mice. J Exp Med 187: 1735–1743Google Scholar
  87. 87.
    Leist M, Single B, Künstle G, Volbracht C, Hentze H, Nicotera P: Apoptosis in the absence of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 233: 518–522, 1997Google Scholar
  88. 88.
    Trucco C, Oliver FJ, de Murcia G, Ménissier-de Murcia J: DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucl Acids Res 26: 2644–2649, 1998Google Scholar
  89. 89.
    Wang Z-Q, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF: PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11: 2347–2358, 1997Google Scholar
  90. 90.
    Le Rhun Y, Kirkland JB, Shah GM: Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 245: 1–10, 1998Google Scholar
  91. 91.
    Choi DW: At the scene of ischemic brain injury: Is PARP a perp? Nature Med 3: 1073–1074, 1998Google Scholar
  92. 92.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75: 641–652, 1993Google Scholar
  93. 93.
    Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J: Human ICE/CED-3 protease nomenclature. Cell 87: 171, 1996Google Scholar
  94. 94.
    Miller DK, Myerson J, Becker JW: The interleukin-1b converting enzyme family of cysteine proteases. J Cell Biochem 1007: 2–10, 1997Google Scholar
  95. 95.
    Rosen A, Casciola-Rosen L: Macromolecular substrates for the ICElike proteases during apoptosis. J Cell Biochem 64: 50–54, 1997Google Scholar
  96. 96.
    Kaufmann SH: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 49: 5870–5878, 1989Google Scholar
  97. 97.
    Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG: Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976–3985, 1993Google Scholar
  98. 98.
    Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Poly(ADP-ribose) polymerase is cleaved at the onset of apoptosis by prICE, a protease resembling ICE (Interleukin 1-β Converting Enzyme). Nature 371: 346–347, 1994Google Scholar
  99. 99.
    Lazebnik YA, Takahashi A, Poirier GG, Kaufmann SH, Earnshaw WC: Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. J Cell Sci Suppl 19: 41–49, 1995Google Scholar
  100. 100.
    Tewari M, Quan LR, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM: Yama/CPP32β, mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809, 1995Google Scholar
  101. 101.
    Nicholson DW, All A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T, Yu VL, Miller DK: Identification and inhibition of the ICE/ced-3 protease necessary for mammalian apoptosis. Nature 376: 37–43, 1995Google Scholar
  102. 102.
    Fernandes-Alnemri T, Litwack G, Alnemri ES: Mch2, a new member of the apoptotic ced-3 ICE cysteine protease gene family. Cancer Res 55: 2737–2742, 1995Google Scholar
  103. 103.
    Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Croce CM: Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55: 6045–6052, 1995Google Scholar
  104. 104.
    Wang L, Miura M, Bergeron L, Zhu H, Yuan J: Ich-1, an Ice-ced-3-related gene encodes both positive and negative regulators of programmed cell death. Cell 78: 739–750, 1994Google Scholar
  105. 105.
    Gu Y, Sarnecki C, Aldape RA, Livingston DJ, Su MJ: Cleavage of poly(ADP-ribose) polymerase by interleukin-1β converting enzyme and its homologs TX and Nedd-2. J Biol Chem 270: 18715–18718, 1995Google Scholar
  106. 106.
    Duriez P, Shah GM: Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochem Cell Biol 75: 337–349, 1997Google Scholar
  107. 107.
    Margolin N, Raybuch SA, Wilson KP, Chen W, Fox T, Gu Y, Livingston DJ: Substrate and inhibitor specificity of interleukin-1β-converting enzyme and related caspases. J Biol Chem 272: 7223–7228, 1997Google Scholar
  108. 108.
    Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW: Substrate specificities of caspase family proteases. J Biol Chem 272: 9677–9682, 1997Google Scholar
  109. 109.
    Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y: Poly(ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA binding domain, and the automodification domain. J Biol Chem 259: 4770–4776, 1984Google Scholar
  110. 110.
    Lamarre D, Talbot B, de Murcia G, Laplante C, Leduc Y, Mazen A, Poirier GG: Monoclonal antibodies against poly(ADP-ribose) polymerase. Epitope mapping, inhibition of activity, inter-species immunoreactivity and cellular distribution of enzyme. Biochim Biophys Acta 950: 147–160, 1988Google Scholar
  111. 111.
    D'Amours D, Germain M, Orth K, Dixit VM, Poirier GG: Proteolysis of poly(ADP-ribose) polymerase by caspase-3: Kinetics of cleavage of mono(ADP-ribosyl)ated and DNA-bound substrates. Radiation Res 150: 3–10, 1998Google Scholar
  112. 112.
    Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M et al.: Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411, 1995Google Scholar
  113. 113.
    Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA: Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 84: 368–372, 1996Google Scholar
  114. 114.
    Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O'Brien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR: The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15: 2407–2416, 1996Google Scholar
  115. 115.
    Quan LT, Tewari M, O'Rourke K, Dixit V, Snipas SJ, Poirier GG, Ray C, Pickup DJ, Salvesen GS: Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc Natl Acad Sci USA 93: 1972–1976, 1996Google Scholar
  116. 116.
    Beidler DR, Tewari M, Friesen PD, Poirier GG, Dixit VM: The baculovirus p35 protein inhibits Fas and tumor necrosis factor-induced apoptosis. J Biol Chem 270: 16526–16528, 1995Google Scholar
  117. 117.
    Bump NJ, Hackete M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P, Licary P, Mankovich J, Shi L, Greenberg AH, Miller LK, Wong WW: Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888, 1995Google Scholar
  118. 118.
    Robertson NM, Zangrilli J, Fernandes-Alnemri T, Friesen PD, Litwack G, Alnemri ES: Baculovirus p35 inhibits the glucocorticoid-mediated pathway of cell death. Cancer Res 57: 43–47, 1997Google Scholar
  119. 119.
    Ibrado AM, Huang Y, Fang G, Liu L, Bhalla K: Overexpression of Bcl-2 or Bcl-XL inhibits ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res 56: 4743–4748, 1996Google Scholar
  120. 120.
    Boulakia CA, Chen G, Ng FWH, Teodoro JG, Branton PE, Nicholson DW, Poirier GG, Shore GC: Bcl-2 and adenovirus E1B 19 kDa protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. Oncogene 12: 529–535, 1996Google Scholar
  121. 121.
    Shah GM, Shah RG, Poirier GG: Different cleavage pattern for poly(ADP-ribose) polymerase during necrosis and apoptosis in HL-60 cells. Biochem Biophys Res Commun 229: 838–844, 1996Google Scholar
  122. 122.
    Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF: DNA-dependent protein kinase catalytic subunit: A target for an ICE-like protease in apoptosis. EMBO J 15: 3238–3246, 1996Google Scholar
  123. 123.
    Weinfeld M, Chaudhry MA, D'Amours D, Pelletier JD, Poirier GG, Povirk LF, Lees-Miller SP: Interaction of DNA-dependent protein kinase and poly(ADP-ribose) polymerase with radiationinduced DNA strand breaks. Radiation Res 148: 22–28, 1997Google Scholar
  124. 124.
    Jeggo PA: PARP-another guardian angel? Current Biol 8: 49–51, 1998Google Scholar
  125. 125.
    Venkatachalam S, Denissenko M, Wani AA: Modulation of (±)-anti-BPDE mediated p53 accumulation by inhibitors of protein kinase C and poly(ADP-ribose) polymerase. Oncogene 14: 801–809, 1997Google Scholar
  126. 126.
    Vaziri H, West MD, Allsopp RC, Davison TS, Wu Y-S, Arrowsmith CH, Poirier GG, Benchimol S: ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the posttranslational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16: 6018–6033, 1997Google Scholar
  127. 127.
    Wesierska-Gadek J, Schmid G, Cerni C: ADP-ribosylation of wild-type p53 in vitro: binding of p53 to specific consensus sequence prevents its modification. Biochem Biophys Res Commun 224: 96–102, 1996Google Scholar
  128. 128.
    Malanga M, Pleschke JM, Kleczkowska HE, Althaus FR: Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 273: 11839–11843, 1998Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. Ivana Scovassi
    • 1
  • Guy G. Poirier
    • 2
  1. 1.Istituto di Genetica Biochimica ed Evoluzionistica del C.N.R.PaviaItaly
  2. 2.Health and Environment Unit, CHUL Research CenterCanada

Personalised recommendations