Advertisement

Optical and Quantum Electronics

, Volume 30, Issue 5–6, pp 323–334 | Cite as

An improved design of an integrated optical isolator based on non-reciprocalMach–Zehnder interferometry

  • N. Bahlmann
  • M. Lohmeyer
  • M. Wallenhorst
  • H. Dötsch
  • P. Hertel
Article

Abstract

Non-reciprocal rib waveguide structures can be used to realize integrated optical isolators. In this paper, we propose a concrete design for a Mach–Zehnder interferometer type isolator for TM modes. Just one of the arms, which are of equal length, is a non-reciprocal magneto-optic waveguide. The rest of the interferometer is reciprocal. Required fabrication tolerances are estimated, and the entire isolator is simulated by applying a finite difference beam propagation method.

Keywords

Communication Network Finite Difference Equal Length Beam Propagation Waveguide Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Wolfe, J. Dillon Jr, R. A. Lieberman and V. J. Fratello, Appl. Phys. Lett. 57 (1990) 960.Google Scholar
  2. 2.
    K. Ando, T. Okoshi and N. Koshizuka, Appl. Phys. Lett. 53 (1988) 4.Google Scholar
  3. 3.
    T. Mizumoto, Y. Kawaoka and Y. Naito, Trans. IECE Jpn. E 69 (1986) 968.Google Scholar
  4. 4.
    H. Hemme, H. DÖtsch and P. Hertel, Appl. Opt. 29 (1990) 2741.Google Scholar
  5. 5.
    S. Yamamoto, Y. Okamura and T. Makimoto, IEEE J. Quantum Electron. QE-12 (1976) 764.Google Scholar
  6. 6.
    T. Shintaku, Appl. Phys. Lett. 66 (1995) 2789.Google Scholar
  7. 7.
    F. Auracher and H. Witte, Opt. Commun. 13 (1975) 435.Google Scholar
  8. 8.
    Y. Okamura, T. Negami and S. Yamamoto, Appl. Opt. 23 (1984) 1886.Google Scholar
  9. 9.
    S. Yamamoto and T. Makimoto, J. Appl. Opt. 45 (1974) 882.Google Scholar
  10. 10.
    A. Erdmann, M. Shamonin, P. Hertel and H. DÖtsch, Opt. Commun. 102 (1993) 25.Google Scholar
  11. 11.
    M. Koshiba and X. Zhuang, J. Lightwave Technol. 11 (1993) 1453.Google Scholar
  12. 12.
    N. Mabaya, P. Lagasse and P. Vandenbulcke, IEEE Trans. Microwave Theory Tech. MTT-29 (1981) 600.Google Scholar
  13. 13.
    M. Shamonin and P. Hertel, Appl. Opt. 33 (1994) 6415.Google Scholar
  14. 14.
    M. Shamonin and P. Hertel, Opt. Eng. 34 (1995) 849.Google Scholar
  15. 15.
    M. Wallenhorst, M. NiemÖller, H. DÖtsch, P. Hertel, R. Gerhardt and B. Gather, J. Appl. Phys. 77 (1995) 2902.Google Scholar
  16. 16.
    T. Mizumoto, S. Mashimo, T. Ida and Y. Naito, IEEE Trans. Magn. 29 (1993) 3417.Google Scholar
  17. 17.
    P. LÖbl, M. Huppertz and D. Mergel, Thin Solid Films 251 (1994) 72.Google Scholar
  18. 18.
    J. P. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther and A. Saxer, Appl.Opt. 28 (1989) 3303.Google Scholar
  19. 19.
    M. J. Ahmed and L. Young Appl. Opt. 22 (1983) 4082.Google Scholar
  20. 20.
    R. Wolfe, R. A. Lieberman, V. J. Fratello, R. E. Scotti and N. Kopylov, Appl. Phys. Lett. 56 (1989) 426.Google Scholar
  21. 21.
    W. Karthe and R. MÜller, Integrierte Optik (Akademische Verlags-gescellschaft Geest & Portig, Leipzig, 1991).Google Scholar
  22. 22.
    K. Tsutsumi, Y. Imada, H. Hirai and Y. Yuba, J. Lightwave Technol. 6 (1988) 590.Google Scholar
  23. 23.
    M. D. Feit and J. A. Fleck Jr, Appl. Opt. 17 (1978) 3990.Google Scholar
  24. 24.
    Y. Chung and N. Dagli, IEEE J. Quantum Electron. 26 (1990) 1335.Google Scholar
  25. 25.
    H. J. W. M. Hoekstra, Opt. Quantum Electron. 29 (1997) 157.Google Scholar
  26. 26.
    A. Erdmann and P. Hertel, IEEE J. Quantum Electron. 31 (1995) 1510.Google Scholar
  27. 27.
    G. B. Hocker and W. K. Burns, Appl. Opt. 16 (1977) 113.Google Scholar
  28. 28.
    G. R. Hadley, Opt. Lett. 16 (1991) 624.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • N. Bahlmann
    • 1
  • M. Lohmeyer
    • 1
  • M. Wallenhorst
    • 1
  • H. Dötsch
    • 1
  • P. Hertel
    • 1
  1. 1.University of OsnabrückOsnabrückGermany

Personalised recommendations