Molecular Biology Reports

, Volume 26, Issue 1–2, pp 15–19 | Cite as

Assembly of the regulatory complex of the 26S proteasome

  • Carlos Gorbea
  • Daniel Taillandier
  • Martin Rechsteiner
Article

Abstract

The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.

ATPase protein degradation regulatory complex 26S proteasome ubiquitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richmond C, Gorbea C & Rechsteiner M (1997) J. Biol. Chem. 272: 13403–13411Google Scholar
  2. 2.
    Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623Google Scholar
  3. 3.
    Rechsteiner M (1998) The 26S Proteasome. In: Peters JM, Harris JR & Finley D (eds), Ubiquitin and the Biology of the Cell. Plenum Press Inc, New York, pp. 147–189.Google Scholar
  4. 4.
    Hershko A & Ciechanover A (1998) Annu. Rev. Biochem. 67: 425–479Google Scholar
  5. 5.
    Hoffman L, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22362–22368Google Scholar
  6. 6.
    Chu-Ping M, Vu JH, Proske RJ, Slaughter CA & DeMartino GN (1994) J. Biol. Chem. 269: 3539–3547Google Scholar
  7. 7.
    Peter JM, Franke WW & Kleinschmidt JA (1994) J. Biol. Chem. 269: 7709–7718Google Scholar
  8. 8.
    Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162Google Scholar
  9. 9.
    Udvardy A (1993) J. Biol. Chem. 268: 9055–9062Google Scholar
  10. 10.
    Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539Google Scholar
  11. 11.
    Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD & Huber R (1997) Nature 386: 463–471Google Scholar
  12. 12.
    Seemuller E, Lupas A, Stock D, Löwe J, Huber R & Baumeister W (1995) Science 268: 579–582Google Scholar
  13. 13.
    Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061Google Scholar
  14. 14.
    Armon T, Ganoth D & Hershko A (1990) J. Biol. Chem. 265: 20723–20726Google Scholar
  15. 15.
    Ugai S, Tamura T, Tanahashi N, Takai S, Komi N, Chung CH, Tanaka K & Ichihara A (1993) J. Biochem. (Tokyo) 113: 754–768Google Scholar
  16. 16.
    Kanayama HO, Tamura T, Ugai S, Kagawa S, Tanahashi N, Yoshimura T, Tanaka K & Ichihara A (1992) Eur. J. Biochem. 206: 567–578Google Scholar
  17. 17.
    Hoffman L & Rechsteiner M (1996) J. Biol. Chem. 271: 32538–32545Google Scholar
  18. 18.
    Eytan E, Armon T, Heller H, Beck S & Hershko A (1993) J. Biol. Chem. 268: 4668–4674Google Scholar
  19. 19.
    Lam YA, Xu W, DeMartino GN & Cohen RE (1997) Nature 385: 737–740Google Scholar
  20. 20.
    Confalonieri F & Duguet M (1995) Bioessays 17: 639–650Google Scholar
  21. 21.
    Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362Google Scholar
  22. 22.
    Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355–357Google Scholar
  23. 23.
    Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO J. 17: 4909–4919Google Scholar
  24. 24.
    Asano K, Vornlocherm HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG & Hershey JW (1997) J. Biol. Chem. 272: 27042–27052Google Scholar
  25. 25.
    Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M & Dubiel W(1998) FASEB J. 12: 469–478Google Scholar
  26. 26.
    Deveraux Q, van Nocker S, Mahaffey D, Vierstra R & Rechsteiner M (1995) J. Biol. Chem. 270: 29660–29663Google Scholar
  27. 27.
    van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 16: 6020–6028Google Scholar
  28. 28.
    Peters JM, Harris JR & Kleinschmidt JA (1991) Eur. J. Cell Biol. 56: 422–432Google Scholar
  29. 29.
    Walz J, Erdmann A, Kania M, Typke D, Koster AJ & Baumeister W (1998) J. Struct. Biol. 121: 19–29Google Scholar
  30. 30.
    Ikai A, Nishigai M, Tanaka K & Ichihara A (1991) FEBS Lett. 292: 21–24Google Scholar
  31. 31.
    Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K & Ichihara A (1993) J. Struct. Biol. 111: 200–211Google Scholar
  32. 32.
    Adams GM, Falke S, Goldberg AL, Slaughter CA, DeMartino GN & Gogol EP (1997) J. Mol. Biol. 273: 646–657Google Scholar
  33. 33.
    Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T & Nakagawa H (1994) J. Biol. Chem. 269: 25905–25910Google Scholar
  34. 34.
    Deveraux Q, Jensen C & Rechsteiner M (1995) J. Biol. Chem. 270: 23726–23729Google Scholar
  35. 35.
    Yu RC, Hanson PI, Jahn R & Brunger AT (1998) Nat. Struct. Biol. 5: 803–811Google Scholar
  36. 36.
    Peters JM, Walsh MJ& Franke WW(1990) EMBO J. 9: 1757–1767Google Scholar
  37. 37.
    Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R & Baumeister W (1998) J. Mol. Biol. 277: 13–25Google Scholar
  38. 38.
    Wilkinson CR, Wallace M, Seeger M, Dubiel W & Gordon C (1997) J. Biol. Chem. 272: 25768–25777Google Scholar
  39. 39.
    Saira Mian I (1993) Trends Biochem. Sci. 18: 125–127Google Scholar
  40. 40.
    Lupas A, Van Dyke M & Stock J (1991) Science 252: 1162–1164Google Scholar
  41. 41.
    Lupas A (1996) Trends Biochem. Sci. 21: 375–382Google Scholar
  42. 42.
    Rechsteiner M, Hoffman L & Dubiel W (1993) J. Biol. Chem. 268: 6065–6068Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Carlos Gorbea
    • 1
  • Daniel Taillandier
    • 2
  • Martin Rechsteiner
    • 1
  1. 1.Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.INRA de Theix et CRNH d'AuvergneUnité d'Etudes du Metabolisme AzotéCeyratFrance

Personalised recommendations