Cellular and Molecular Neurobiology

, Volume 19, Issue 6, pp 705–718

Glutamate Receptor Requirement for Neuronal Death from Anoxia–Reoxygenation: An in Vitro Model for Assessment of the Neuroprotective Effects of Estrogens

  • Larissa L. Zaulyanov
  • Pattie S. Green
  • James W. Simpkins


1.Previous studies demonstrated that estrogens, specifically 17β-estradiol, the potent, naturally occurring estrogen, are neuroprotective in a variety of models including glutamate toxicity. The aim of the present study is twofold: (1) to assess the requirement for glutamate receptors in neuronal cell death associated with anoxia–reoxygenation in three cell types, SK-N-SH and HT-22 neuronal cell lines and primary rat cortical neuronal cultures, and (2) to evaluate the neuroprotective activity of both 17β-estradiol and its weaker isomer, 17α-estradiol, in both anoxia-reoxygenation and glutamate toxicity.

2.SK-N-SH and HT-22 cell lines, both of which lack NMDA receptors as assessed by MK-801 binding assays, were resistant to both anoxia–reoxygenation and glutamate-induced cell death. In contrast, primary rat cortical neurons, which exhibit both NMDA and AMPA receptors, were sensitive to brief periods of exposure to anoxia–reoxygenation or glutamate. As such, there appears to be an obligatory requirement for NMDA and/or AMPA receptors in neuronal cell death resulting from brief periods of anoxia followed by reoxygenation.

3.Using primary rat cortical neuronal cultures, we evaluated the neuroprotective activity of 17β-estradiol (1.3 or 133 nM) and 17α-estradiol (133 nM) in both anoxia–reoxygenation and excitotoxicity models of cell death. We found that the 133 nM but not the 1.3 nM dose of the potent estrogen, 17β-estradiol, protected 58.0, 57.5, and 85.3% of the primary rat cortical neurons from anoxia–reoxygenation, glutamate, or AMPA toxicity, respectively, and the 133 nM dose of the weak estrogen, 17α-estradiol, protected 74.6, 81.7, and 85.8% of cells from anoxia–reoxygenation, glutamate, or AMPA toxicity, respectively. These data demonstrate that pretreatment with estrogens can attenuate glutamate excitotoxicity and that this protection is independent of the ability of the steroid to bind the estrogen receptor.

SK-N-SH neuroblastoma cells HT-22 cells rat primary cortical neurons anoxia–reoxygenation glutamate 17β-estradiol 17α-estradiol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkayed, N. J., Harukuni, I., Kimes, A. S., London, E. D., Traystman, R. J., and Hurn, P. D. (1998). Gender-linked brain injury in experimental stroke. Stroke 29:159–165.Google Scholar
  2. Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., and Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 765:283–290.Google Scholar
  3. Behl, C., Widmann, M., Trapp, T., and Holsboer, F. (1995). 17-β Estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem. Biophys. Res. Commun. 216:473–482.Google Scholar
  4. Behl, C., Skutella, T., Lezoualc'h, F., Post, A., Widmann, M, Newton, C. J., and Holsboer, F. (1997). Neuroprotection against oxidative stress by estrogens: structure activity relationship. Mol. Pharmacol. 51:535–541.Google Scholar
  5. Bengtsson, F., and Siesjo, B. K. (1989). Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.Google Scholar
  6. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.Google Scholar
  7. Bishop, J., and Simpkins, J. W. (1994). Estradiol treatment increases viability of glioma and neuroblastoma cells in vitro. Mol. Cell. Neurosci. 5:303–308.Google Scholar
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.Google Scholar
  9. Braughler, J. M., and Hall, E. D. (1989). Central nervous system trauma and stroke. I. biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad. Bio. Med. 6:289–301.Google Scholar
  10. Brinton, R. D. (1993). 17β-Estradiol induction of filopodial growth in cultured hippocampal neurons within minutes of exposure. Mol. Cell Neurosci. 4:36–46.Google Scholar
  11. Brinton, R. D., Proffitt, P., Tran, J., and Luu, R. (1997a). Equilin, a principal component of the estrogen replacement therapy premarin, increases the growth of cortical neurons via an NMDA receptor-dependent mechanism. Exp. Neurol. 147:211–220.Google Scholar
  12. Brinton, R. D., Tran, J., Proffitt, P., and Kahil, M. (1997b). 17β-Estradiol enhances the outgrowth and survival of neocortical neurons in culture. Neurochem. Res. 22:1339–1351.Google Scholar
  13. Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H., and Lesiuk, H. (1991). Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport. 2:473–476.Google Scholar
  14. Bullock, R. (1995). Strategies for neuroprotection with glutamate antagonists. Extrapolating form evidence taken from the first stroke and head injury studies. Ann. N.Y. Acad. Sci. 765:272–278.Google Scholar
  15. Chandler, L. J., Sumners, C., and Crews, F. T. (1993). Ethanol inhibits NMDA receptor-mediated excitotoxicity in rat primary neuronal cultures. Alcohol Clin. Exp. Res. 17:54–60.Google Scholar
  16. Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7:369–379.Google Scholar
  17. Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.Google Scholar
  18. Choi, D. W. (1992). Excitotoxic cell death. J. Neurobiol. 23:1261–1276.Google Scholar
  19. Clark, J. H., and Markaverich, B. M. (1983). The agonistic and antagonistic effects of short acting estrogens: A review. Pharmacol. Ther. 21:429–453.Google Scholar
  20. Clark, J. H., Williams, M., Upchurch, S., Eriksson, H., Helton, E., and Markaverich, B. M. (1982). Effects of estradiol-17 alpha on nuclear occupancy of the estrogen receptor, stimulation of nuclear type II sites and uterine growth. J. Steroid Biochem. 16:323–328.Google Scholar
  21. Davis, J. B., and Maher, P. (1994). Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652:169–173.Google Scholar
  22. Dubal, D. B., Kashon, M. L., Pettigrew, L. C., Ren, J. M., Finklestein, S. P., Rau, S. W., and Wise, P. M. (1998). Estradiol protects against ischemic injury. J. Cereb. Blood Flow 18:1253–1258.Google Scholar
  23. Dugan, L. L., and Choi, D. W. (1994). Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35:17–21.Google Scholar
  24. Fillit, H., Weinreb, H., Cholst, I., Luine, V., McEwen, B., Amador, R., and Zabriskie, J. (1985). Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer's type. Psychoneuroendocrinology 11:337–345.Google Scholar
  25. Finucane, F. F., Madans, J. H., Bush, T. L., Wolf, P. H., and Kleinman, J. C. (1993). Decreased risk of stroke among postmenopausal hormone users. Results from a national cohort. Arch. Intern. Med. 153:73–79.Google Scholar
  26. Frandsen, A., Drejer, J., and Schousboe, A. (1989). Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J. Neurochem. 53:297–299.Google Scholar
  27. Gasic, G. P., and Hollmann, M. (1992). Molecular neurobiology of glutamate receptors. Annu. Rev. Physiol. 54:507–536.Google Scholar
  28. Goldberg, M. P., Weiss, J. H., Phuong-Chi, P., and Choi, D. W. (1987). N-Methyl D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J. Pharmacol. Exp. Ther. 243:784–791.Google Scholar
  29. Goodman, Y., Bruce, A. J., Cheng, B., and Mattson, M. P. (1996). Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons. J. Neurochem. 66:1836–1844.Google Scholar
  30. Green, P. S., Gridley, K. E., and Simpkins, J. W. (1996). Estradiol protects against β-amyloid (25–35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci. Lett. 218:165–168.Google Scholar
  31. Green, P. S., Bishop, J., and Simpkins, J. W. (1997a). 17 α-Estradiol exerts neuroprotective effects on SK-N-SH cells. J. Neurosci. 17:511–515.Google Scholar
  32. Green, P. S., Gordon, K., and Simpkins, J. W. (1997b). Phenolic A ring requirement for the neuroprotective effects of steroids. J. Steroid Biochem. Mol. Biol. 63:229–235.Google Scholar
  33. Green, P. S., Gridley, K. E., and Simpkins, J. W. (1998). Nuclear estrogen receptor-independent neuroprotection by estratrienes: A novel interaction with glutathione. Neuroscience 84:7–10.Google Scholar
  34. Gridley, K. E., Green, P. S., and Simpkins, J. W. (1997). Low concentrations of estradiol reduce β-amyloid (25–35)-induced toxicity, lipid peroxidation and glucose utilization in human SK-N-SH neuroblastoma cells. Brain Res. 778:158–165.Google Scholar
  35. Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A. (1985). Ischemiainduced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J. Cereb. Blood Flow Metab. 5:413–419.Google Scholar
  36. Hartikka, J., and Hefti, F. (1988). Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J. Neurosci. 8:2967–2985.Google Scholar
  37. Hastings, T. G., and Reynolds, I. J. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318–3327.Google Scholar
  38. Henderson, V. W., Paganini-Hill, A., Emanuel, C. K., Dunn, M. E., and Buckwalter, J. G. (1994). Estrogen replacement therapy in older women. Comparisons between Alzheimer's disease cases and nondemented control subjects. Arch. Neurol. 51:896–900.Google Scholar
  39. Huggins, C., Jensen, E. V., and Cleveland, A. S. (1954). Chemical structure of steroids in relation to promotion of growth of the vagina and uterus of the hypophysectomized rat. J. Exp. Med. 100:225–243.Google Scholar
  40. Kneifel, M. A., Leytus, S. P., Fletcher, E., Weber, T., Mangel, W. F., and Katzenellenbogen, B. S. (1982). Uterine plasminogen activator activity: modulation by steroid hormones. Endocrinology 111:493–499.Google Scholar
  41. Korenman, S. G. (1969). Comparative binding affinity of estrogens and its relation to estrogenic potency. Steroids 13:163–177.Google Scholar
  42. Kuiper, G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. A. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–870.Google Scholar
  43. Lacort, M., Leal, A. M., Liza, M., Martin, C., Martinez, R., and Ruiz-Larrea, M. B. (1995). Protective effects of estrogens and catecholestrogens against peroxidative membrane damage in vitro. Lipids 30:141–146.Google Scholar
  44. Lipton, S. A., and Rosenberg, P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.Google Scholar
  45. Lubahan, D. B., McCarty, K. S., Jr., and McCarty, K. S., Sr. (1985). Electrophoretic characterization of purified bovine, porcine, murine, rat, and human uterine estrogen receptors. J. Biol. Chem. 260:2515–2526.Google Scholar
  46. Michaels, R. L., and Rothman, S. M. (1990). Glutamate neurotoxicity in vitro: Antagonist pharmacology and intracellular calcium concentrations. J. Neurosci. 10:283–292.Google Scholar
  47. Morley, P., Hogan, M. J., and Hakim, A. M. (1994). Calcium-mediated mechanisms of ischemic injury and protection. Brain Pathol. 4:37–47.Google Scholar
  48. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., and Coyle, J. T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558.Google Scholar
  49. Nakano, M., Sugioka, K., Naito, I., Takekoshi, S., and Niki, E. (1987). Novel and potent biological antioxidants on membrane phospholipid peroxidation: 2-Hydroxyestrone and 2-hydroxyestradiol. Biochem. Biophys. Res. Commun. 142:919–924.Google Scholar
  50. Ohkura, T., Isse, K., Akazawa, K., Hamamoto, M., Yaoi, Y., and Hagino, N. (1994). Low-dose estrogen replacement therapy for Alzheimer disease in women. Menopause 1:125–130.Google Scholar
  51. Ohkura, T., Isse, K., Akazawa, K., Hamamoto, M., Yaoi, Y., and Hagino, N. (1995). Long-term estrogen replacement therapy in female patients with dementia of the Alzheimer's type 7 case reports. Dementia 6:99–107.Google Scholar
  52. Olney, J. W. (1986). Inciting excitotoxic cytocide among central neurons. Adv. Exp. Med. Biol. 203:631–645.Google Scholar
  53. O'Malley, E. K., Black, I. B., and Dryfus, C. F. (1991). Local support cells promote survival of substantia nigra dopaminergic neurons in culture. Exp. Neurol. 112:40–48.Google Scholar
  54. Paganini-Hill, A. (1995). Estrogen replacement therapy and stroke. Prog. Cardiovasc. Dis. 38:223–242.Google Scholar
  55. Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. (1988). The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24:543–551.Google Scholar
  56. Shi, J., Zhang, Y. Q., and Simpkins, J. W. (1997). Effects of 17β-estradiol on glucose transporter 1 expression and endothelial cell survival following focal ischemia in the rats. Exp. Brain Res. 117:200–206.Google Scholar
  57. Siesjo, B. K., Zhao, Q., Pahlmark, K., Seisjo, P., Katsura, K., and Folbergrova, J. (1995). Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann. Thorac Surg. 59:1316–1320.Google Scholar
  58. Simpkins, J. W., Rajakumar, G., Zhang, Y. Q., Simpkins, C. E., Greenwald, D., Yu, C. J., Bodor, N., and Day, A. L. (1997). Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J. Neurosurg. 87:724–730.Google Scholar
  59. Singer, C. A., Rogers, K. L., Strickland, T. M., and Dorsa, D. M. (1996). Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci. Lett. 212:13–16.Google Scholar
  60. Speicher, D. W., Peace, J. N., and McCarl, R. L. (1981). Effects of plating density and age in culture on growth and cell division of neonatal rat heart primary cultures. In Vitro 17:863–870.Google Scholar
  61. Sugioka, K., Shimosegawa, Y., and Nakano, M. (1987). Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett. 210:37–39.Google Scholar
  62. Takanashi, K., Watanabe, K., and Yoshizawa, I. (1995). On the inhibitory effects of C17-sulfoconjugated catechol estrogens upon lipid peroxidation of rat liver microsomes. Biol. Pharm. Bull. 18:1120–1125.Google Scholar
  63. Tang, M., Abplanalp, W., Ayres, S., and Subbiah, M. T. (1996). Superior and distinct antioxidant effects of selected estrogen metabolites on lipid peroxidation. Metabolism 45:411–414.Google Scholar
  64. Velazquez, J. L., Frantseva, M. V., and Carlen, P. L. (1997). In vitro ischemia promotes glutamatemediated free radial generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J. Neurosci. 17:9085–9094.Google Scholar
  65. Weaver, C. E., Jr., Park-Chung, M., Gibbs, T. T., and Farb, D. H. (1997). 17β-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 761:338–341.Google Scholar
  66. Wong, M., and Moss, R. L. (1992). Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J. Neurosci. 12:3217–3225.Google Scholar
  67. Wren, B. G. (1992). The effect of oestrogen on the female cardiovascular system. Med. J. Aust. 157:204–208.Google Scholar
  68. Zhang, Y. Q., Shi, J., Rajakumar, G., Day, A. L., and Simpkins, J. W. (1998). Effects of gender and estradiol treatment on focal brain ischemia. Brain Res. 784:321–324.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Larissa L. Zaulyanov
    • 1
  • Pattie S. Green
    • 1
  • James W. Simpkins
    • 1
  1. 1.Department of Pharmacodynamics and Center for the Neurobiology of Aging, College of PharmacyUniversity of FloridaGainesvilleFlorida

Personalised recommendations