Glycoconjugate Journal

, Volume 15, Issue 10, pp 987–993 | Cite as

Increased elongation of N-acetyllactosamine repeats in doubly glycosylated lysozyme with a particular spacing of the glycosylation sites

  • Ralph Melcher
  • Hans-Wilhelm Grosch
  • Oliver Grosse
  • Andrej Hasilik


Lysozyme is an example of an extensively studied secretory enzyme. Glycosylated mutant human lysozyme has been used as a model in studies on the biosynthesis of N-acetyllactosamine repeats in N-linked oligosaccharides. We examined the biosynthesis of the repeats in two doubly glycosylated mutants and describe here a rapid purification and separation of singly and doubly glycosylated molecules. In one of the mutants, the elongation of the repeats is enhanced if the molecules are doubly glycosylated, but not if the carbohydrate is attached to either site individually. This enhancement is not seen in the other doubly glycosylated mutant. Since lysozyme is not structurally related to glycoproteins bearing carbohydrate with N-acetyllactosamine repeats, we propose that in multivalent substrates the synthesis of the repeats can be promoted by a proper spacing of the elongated carbohydrate antennae in addition to any role of the protein backbone.


Carbohydrate Oligosaccharide Lysozyme Glycosylation Site Secretory Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunon D, Piali L, Imhof BA (1996) Curr Opin Cell Biol 8: 714-23.Google Scholar
  2. 2.
    Ley K (1996) Cardiovas Res 32: 733-42.Google Scholar
  3. 3.
    Etzioni A (1996) Pediatr Res 39: 191-8.Google Scholar
  4. 4.
    Lasky LA (1995) Annu Rev Biochem 64: 113-39.Google Scholar
  5. 5.
    McEver RP, Moore KL and Cummings RD (1995) J Biol Chem 270: 11025-8.Google Scholar
  6. 6.
    Tedder TF, Steeber DA, Chen A, Engel P (1995) FASEB J 10: 866-73.Google Scholar
  7. 7.
    Patel KD, Nollert MU, McEver RP (1995) J Cell Biol 131: 1893-902.Google Scholar
  8. 8.
    Fukuda M, Hakomori S (1982) J Biol Chem 257: 446-55.Google Scholar
  9. 9.
    Singhal A, Hakomori S (1990) Bio Essays 12: 223-30.Google Scholar
  10. 10.
    Capon C, Laboisse CL, Wieruszenski JN, Maoret JJ, Augeron C, Fournet B (1992) J Biol Chem 267: 19248-57.Google Scholar
  11. 11.
    Fukuda M, Carlsson SR, Klock JC, Dell A(1986) J Biol Chem 251: 12796-806.Google Scholar
  12. 12.
    Yousefi S, Higgins E, Daoling Z, Pollex-Kruger A, Hindsgaul O, Dennis J W (1991) J Biol Chem 166: 1772-82.Google Scholar
  13. 13.
    Koenderman HL, Koppen PL, van den Eijnden DH (1987) Eur J Biochem 166: 199-208.Google Scholar
  14. 14.
    Wang WC, Lee N, Aoki D, Fukuda MN, Fukuda M (1991) J Biol Chem 266: 23185-90.Google Scholar
  15. 15.
    Lee N, Wang WC, Fukuda M (1990) J Biol Chem 265: 20476-87.Google Scholar
  16. 16.
    Radons J, Faber V, Buhrmester H, Volker W, Horejsi V, Hasilik A (1992) Eur J Cell Biol 57: 184-92.Google Scholar
  17. 17.
    Cho SK, Yeh J, Cho M, Cummings RD (1996) J Biol Chem 271: 3238-46.Google Scholar
  18. 18.
    Carlsson SR, Fukuda M (1990) J Biol Chem 265: 20488-95.Google Scholar
  19. 19.
    Horst M, Harth N, Hasilik A (1991) J Biol Chem 266: 13914-9.Google Scholar
  20. 20.
    Hummel M, Hedrich HC, Hasilik A (1997) Eur J Biochem 245: 428-33.Google Scholar
  21. 21.
    Deutscher SL, Nuwayhid N, Stanley P, Briles EIB, Hirschberg CB (1984) Cell 39: 295-9.Google Scholar
  22. 22.
    Artymiuk PJ, Blake CCF (1981) J Mol Biol 152: 737-62.Google Scholar
  23. 23.
    Kunkel TA (1985) Proc Natl Acad Sci U S A 82: 488-92.Google Scholar
  24. 24.
    Kasturi L, Eshleman JR, Wunner WH, Shakin-Eshleman SH (1995) J Biol Chem 270: 14756-61.Google Scholar
  25. 25.
    Higuchi R, Krummel B, Saiki RK (1988) Nuleic Acids Res 16: 7351-67.Google Scholar
  26. 26.
    Vallette F, Mege E, Reiss A, Adesnik M (1989) Nucleic Acids Res 17: 723-33.Google Scholar
  27. 27.
    Kaufman RJ, Davies MV, Pathak VK, Hershey JWB (1988) Mol Cell Biol 9: 946-58.Google Scholar
  28. 28.
    Felgner PL, Gadek TR, Holms M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M(1987) Proc Natl Acad Sci U S A 84: 7413-7.Google Scholar
  29. 29.
    Gupta DK, von Figura K, Hasilik A (1987) Clin Chim Acta 165: 73-82.Google Scholar
  30. 30.
    Laemmli UK (1970) Nature 227: 680-5.Google Scholar
  31. 31.
    Laskey RA, Mills AD (1975) Eur J Biochem 56: 335-41.Google Scholar
  32. 32.
    Heukeshoven J, Dernick R (1988) Electrophoresis 9: 28-32.Google Scholar
  33. 33.
    Yoshimura K, Toibana A, Nakahama K (1988) Biochem Biophys Res Commun 150: 794-801.Google Scholar
  34. 34.
    Fukuda M, Dell A, Fukuda MN (1984) J Biol Chem 259: 4782-91.Google Scholar
  35. 35.
    Tai G, Nieduszynski IA, Fullwood NJ, Huckerby T (1997) J Biol Chem 272: 28227-31.Google Scholar
  36. 36.
    Sasaki K, Kurata-Miura K, Ujita M, Angata K, Nakagawa S, Sekine S, Nishi T, Fukuda M (1997) Proc Natl Acad Sci U S A 94: 14294-9.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ralph Melcher
    • 1
  • Hans-Wilhelm Grosch
    • 1
  • Oliver Grosse
    • 1
  • Andrej Hasilik
    • 1
  1. 1.Institute of Physiological ChemistryPhilipps-Universität MarburgMarburgGermany

Personalised recommendations