Advertisement

Molecular Biology Reports

, Volume 26, Issue 1–2, pp 137–146 | Cite as

Structure and functional analyses of the 26S proteasome subunits from plants – Plant 26S proteasome

  • Hongyong Fu
  • Pierre-Alain Girod
  • Jed H. Doelling
  • Steven van Nocker
  • Mark Hochstrasser
  • Daniel Finley
  • Richard D. Vierstra
Article

Abstract

As initial steps to define how the 26S proteasome degrades ubiquitinated proteins in plants, we have characterized many of the subunits that comprise the proteolytic complex from Arabidopsis thaliana. A set of 23 Arabidopsis genes encoding the full complement of core particle (CP) subunits and a collection encoding 12 out of 18 known eukaryotic regulatory particle (RP) subunits, including six AAA-ATPase subunits, were identified. Several of these 26S proteasome genes could complement yeast strains missing the corresponding orthologs. Using this ability of plant subunits to functionally replace yeast counterparts, a parallel structure/function analysis was performed with the RP subunit RPN10/MCB1, a putative receptor for ubiquitin conjugates. RPN10 is not essential for yeast viability but is required for amino acid analog tolerance and degradation of proteins via the ubiquitin-fusion degradation pathway, a subpathway within the ubiquitin system. Surprisingly, we found that the C-terminal motif required for conjugate recognition by RPN10 is not essential for in vivo functions. Instead, a domain near the N-terminus is required. We have begun to exploit the moss Physcomitrella patens as a model to characterize the plant 26S proteasome using reverse genetics. By homologous recombination, we have successfully disrupted the RPN10 gene. Unlike yeast rpn10Δ strains which grow normally, Physcomitrella rpn10Δ strains are developmentally arrested, being unable to initiate gametophorogenesis. Further analysis of these mutants revealed that RPN10 is likely required for a developmental program triggered by plant hormones.

Arabidopsis Physcomitrella patens proteasome proteolysis ubiquitin yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hershko A & Ciechanover A (1998) Annu. Rev. Bioch. 67: 425–479Google Scholar
  2. 2.
    Ciechanover A (1994) Cell 79: 13–21Google Scholar
  3. 3.
    Hochstrasser M (1995) Curr. Opin. Cell Biol. 7: 215–223Google Scholar
  4. 4.
    Hochstrasser M (1996) Annu. Rev. Genet. 30: 405–439Google Scholar
  5. 5.
    Hershko A & Ciechanover A (1992) Annu. Rev. Biochem. 61: 761–807Google Scholar
  6. 6.
    Coux O, Tanaka K & Goldberg AL (1996) Anu. Rev. Biochem. 65: 801–847Google Scholar
  7. 7.
    Baumeister W, Walz J, Zuhl F & Seemuler E (1998) Cell 92: 367–380Google Scholar
  8. 8.
    Vierstra RD (1996) Plant Mol. Biol. 32: 275–302Google Scholar
  9. 9.
    Jabben M, Shanklin J & Vierstra RD (1989) J. Biol. Chem. 264: 4998–5005Google Scholar
  10. 10.
    Clough RC & Vierstra RD (1997) Plant Cell Environ. 20: 713–721Google Scholar
  11. 11.
    Lupas A & Baumeister W (1998) In: Peters JM, Harris JR & Finley D (ed.) Ubiquitin and the Biology of the Cell, Plenum Press, New York, pp. 127–146Google Scholar
  12. 12.
    Löwe J, Stock D, Jap F, Zwickl P & Baumeister W (1995) Science 268: 533–539Google Scholar
  13. 13.
    Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD & Huber R (1997) Nature 386: 463–471Google Scholar
  14. 14.
    Fu H, Doelling JH, Arendt CS, Hochstrasser M & Vierstra RD (1998) Genetics 149: 677–692Google Scholar
  15. 15.
    Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162Google Scholar
  16. 16.
    Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, et al. (1998) Trends Biochem. Sci. 23: 244–245Google Scholar
  17. 17.
    Beyer A (1997) Protein Sci. 6: 2043- 2058Google Scholar
  18. 18.
    Arendt CS & Hochstrasser M (1997) Proc. Natl. Acad. Sci. USA 94: 7156–7161Google Scholar
  19. 19.
    Fu H, Sadis S, Rubin DM, Glickman MH, van Nocker S, Finley D & Vierstra, RD (1998). J. Biol. Chem. 273: 1970- 1989Google Scholar
  20. 20.
    Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061Google Scholar
  21. 21.
    van Nocker S, Deveraux Q, Rechsteiner M & Vierstra RD (1996) Proc. Natl. Acad. Sci. U. S. A. 93: 856–860Google Scholar
  22. 22.
    Ferrell K, Deveraux Q, van Nocker S & Rechsteiner M (1996) FEBS Lett. 381: 143–148Google Scholar
  23. 23.
    van Nocker S, Sadis S, Rubin DM, Glickman MH, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 11: 6020–6028Google Scholar
  24. 24.
    Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 710–725Google Scholar
  25. 25.
    Girod PA, Fu H, Zyrd JP & Vierstra RD (1999) (submitted)Google Scholar
  26. 26.
    Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimuro M, Yokosawa H, Shimizu Y, Tanahashi N, Tanaka K & Toh-e A (1997) Mol. Biol. Cell 8: 171–187Google Scholar
  27. 27.
    Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94:615–623Google Scholar
  28. 28.
    Schaefer DG & Zryd J (1997) Plant J. 11: 1195–1206Google Scholar
  29. 29.
    Cove D J & Knight CD (1993) Plant Cell 5: 1483–1488Google Scholar
  30. 30.
    Ashton NW, Grimsley NH & Cove DJ (1979) Mol. Gen. Genetics 154: 87–95Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Hongyong Fu
    • 1
  • Pierre-Alain Girod
    • 2
  • Jed H. Doelling
    • 1
  • Steven van Nocker
    • 1
  • Mark Hochstrasser
    • 3
  • Daniel Finley
    • 4
  • Richard D. Vierstra
    • 1
  1. 1.Cellular and Molecular Biology Program and the Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Laboratoire de PhytogénétiqueUniversité de LausanneLausanneSwitzerland
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA
  4. 4.Department of Cell BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations