Advertisement

Glycoconjugate Journal

, Volume 15, Issue 9, pp 895–904 | Cite as

Enzymatic 4-O-acetylation of N-acetylneuraminic acid in guinea-pig liver

  • Matthias Iwersen
  • Valérie Vandamme-Feldhaus
  • Roland Schauer
Article

Abstract

Sialic acids from the liver and serum of guinea-pig are composed of N-acetylneuraminic acid (Neu5Ac; 85% and 61%, respectively), N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2; 10% and 32%, respectively) and N-glycolylneuraminic acid (Neu5Gc; 5% and 7%, respectively), besides traces of N-glycolyl-4-O-acetylneuraminic acid in serum. The analysis was carried out using thin-layer chromatography, high-performance liquid chromatography, electron impact ionization mass spectrometry, and different enzymes (sialidase, sialate esterase, and sialate-pyruvate lyase after hydrolysis and purification of the sialic acids by ion-exchange chromatography). We showed that this O-acetylation of sialic acids is due to the activity of an acetyl-coenzyme A:sialate-4-O-acetyltransferase (EC 2.3.1.44), which occurs together with sialyltransferase activity in Golgi-enriched membrane fractions of guinea-pig liver. The enzyme operates optimally at 30°C in 70 mM potassium phosphate buffer at pH 6.7 and in the presence of 90 mM KCl with an apparent KM for AcCoA of 0.6 1μM and a Vmax of 20 pmol/mg protein x min. The enzyme is inhibited by coenzyme A in a mixed-competitive manner (Ki = 4.2 μM), as well as by para-chloromercuribenzoate, MnCl2, saponin and Triton X-100.

Sialate-4O-acetyltransferase analytical techniques Golgi-membranes guinea-pig liver sialic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L (1995) In Biology of the Sialic Acids (Rosenberg A, ed), pp 7–67. New York: Plenum Press.Google Scholar
  2. 2.
    Schauer R, Kamerling JP (1997) Chemistry, Biochemistry and Biology of Sialic Acids in Glycoproteins II (Montreuil J, Vliegenthart JFG, Schachter H, eds) pp 243–402. Amsterdam: Elsevier.Google Scholar
  3. 3.
    Varki A (1992) Glycobiology 2: 25–40.Google Scholar
  4. 4.
    Schauer R (1982) Adv Carbohydr Chem Biochem 40: 132–234.Google Scholar
  5. 5.
    Schauer R (1991) Glycobiology 1: 449–52.Google Scholar
  6. 6.
    Klein A,Diaz S, Ferreira I, Lamblin G, Roussel P, Manzi A (1997) Glycobiology 7: 421–32.Google Scholar
  7. 7.
    Inoue S, Iwasaki M, Ishii K, Kitajima K, Inoue Y (1989) J Biol Chem 264: 18520–6.Google Scholar
  8. 8.
    Lochnit G, Geyer R (1995) Eur J Biochem 228: 805–16.Google Scholar
  9. 9.
    Hanaoka K, Pritchett TJ, akasaki S, Kochibe N, Sabesan S, Paulson JC, Kobata A (1989) J Biol Chem 264: 9842–9.Google Scholar
  10. 10.
    Corfield A, Michalski J-C, Schauer R (1981) In Sialidases and Sialidoses, Perspectives in Inherited Metabolic Diseases (Tettamanti G, Durand P, Di Donato S, eds) Vol 4, pp 3–70. Milan: Edi Ermes.Google Scholar
  11. 11.
    Varki A (1997) FASEB J 11: 248–55.Google Scholar
  12. 12.
    Diaz S, Higa H, Hayes BK, Varki A (1989) J Biol Chem 264: 19416–26.Google Scholar
  13. 13.
    Butor C, Diaz S, Varki A (1993) J Biol Chem 268: 10197–206.Google Scholar
  14. 14.
    Vandamme-Feldhaus V, Schauer (1998) J Biochem (Tokyo) 124: 111–121Google Scholar
  15. 15.
    Chammas R, McCaffery JM, Klein A, Ho Y, Saucan L, Palade G, Farquhar MG, Varki A (1996) Mol Bio Cell 7: 1691–707.Google Scholar
  16. 16.
    Schauer R (1970) Hoppe-Seyler's Z Physiol Chem 351: 595–602.Google Scholar
  17. 17.
    Mawhinney TP, Chance DL (1994) Anal Biochem 223: 164–7.Google Scholar
  18. 18.
    Reuter G, Schauer R (1994) Methods Enzymol 230: 168–99.Google Scholar
  19. 19.
    Hara S, Yamaguchi M, Takemori Y, Kimio F, Ogura H, Nakamura M (1989) Anal Biochem 179: 162–7.Google Scholar
  20. 20.
    Crumpton MJ (1959) Biochem J 72: 479–86.Google Scholar
  21. 21.
    Reuter G, Schauer R (1994) In Methods in Carbohydrate Chemistry (BeMiller JN, ed), Vol 10, pp 29–39. New York: John Wiley & Sons.Google Scholar
  22. 22.
    Schauer R, Reuter G, Stoll S, Shukla AK (1988) Biol Chem Hoppe-Seyler 369: 1121–30.Google Scholar
  23. 23.
    Kamerling JP, Vliegenthart JFG, Versluis C, Schauer R (1975) Carbohydr Res 41: 7–17.Google Scholar
  24. 24.
    Lepers A, Shaw L, Cacan R, Schauer R, Montreuil J, Verbert A (1989) FEBS Letters 250: 245–50.Google Scholar
  25. 25.
    Peterson GL (1977) Anal Biochem 83: 346–56.Google Scholar
  26. 26.
    Vandamme V, Cazlaris H, Le Marer N, Landet V, Lagron C, Verbert A, Delannoy P (1992) Biochimie 74: 89–100.Google Scholar
  27. 27.
    Varki A, Diaz S (1985) J Biol Chem 260: 6600–8.Google Scholar
  28. 28.
    Schauer R, Casals-Stenzel J, Corfield AP, Veh RW (1988) Glycoconjugate J 5: 257–70.Google Scholar
  29. 29.
    Higa HH, Butor C, Diaz S, Varki A (1989) J Biol Chem 264: 19427–34.Google Scholar
  30. 30.
    Shi WX, Chammas R, Varki A (1997) J Biol Chem 271: 15130–38.Google Scholar
  31. 31.
    Shi WX, Chammas R, Varki A (1998) Glycobiology 8: 199–205.Google Scholar
  32. 32.
    Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, Sasaki K, Fukuda M, Hirabayashi Y (1997) Proc Natl Acad Sci USA 94: 2897–902.Google Scholar
  33. 33.
    Ogura K, Nara K, Watanabe Y, Kohno K, Tai T, Sanai Y (1997) Biochem Biophys Res Comm 225: 932–8.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Matthias Iwersen
    • 1
  • Valérie Vandamme-Feldhaus
    • 1
  • Roland Schauer
    • 1
  1. 1.Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40KielGermany

Personalised recommendations