Optical and Quantum Electronics

, Volume 31, Issue 9–10, pp 827–841 | Cite as

Rigorous analysis of 3D optical and optoelectronic devices by the Compact-2D-FDTD method

  • F. Zepparelli
  • P. Mezzanotte
  • F. Alimenti
  • L. Roselli
  • R. Sorrentino
  • G. Tartarini
  • P. Bassi
Article

Abstract

Continous advances in material technology, in the field of integrated optics and optoelectronics, allow the realization of devices with geometries more and more compact and complex. Because of this trend, there is a parallel need for accurate fully numerical CAD tools. Among new ones, the FDTD method, already widely and successfully used for the characterization of microwave and millimeter-wave devices, is emerging in optics community because of its accuracy and versatility. However, in spite of the tremendous increase in computing power, the applicability of the method is still limited by the typical dimensions of optical structures. To overcome these limitations a specialized version of the FDTD algorithm for the rigorous analysis of 3D optical and optoelectronic devices is proposed and validated. This new technique is then used to characterize the optical behaviour of a MQW waveguide electroabsorption modulator.

Central finite-differences Compact-2D-FDTD method dispersion limit FDTD method Maxwell's equations modal analysis optical integrated circuits optical waveguides optoelectronic integrated circuits spatial field patterns stability criterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asi, A. and L. Shafai. Electron. Lett. 28 1451, 1992.Google Scholar
  2. Bassi, P., G. Bellanca, G. Nunzi Conti, G.C. Righini and G. Tartarini. Proceedings of SPIE-Photonics West'98, Conference on Rare-Earth-Doped Devices II, S. Clara, California, USA, Jan. 24–30 1998.Google Scholar
  3. Bi, Z., Y. Shen, K. Wu and J. Litva. IEEE Trans. Microwave Theory and Tech. 40 1611, 1992.Google Scholar
  4. Cangellaris, A. IEEE Microwave and Guided Wave Lett. 3 3, 1993.Google Scholar
  5. Humbach, O., A. Stöhr, U. Auer, E.C. Larkins, J.D. Ralston and D. Jäger. IEEE Phot. Technol. Lett. 5 49, 1993.Google Scholar
  6. Lüsse, P., P. Stuwe, J. Schüle and H.G. Hunger. IEEE J. Lightwave Technol. 12 487, 1994.Google Scholar
  7. Mur, G. IEEE Trans. Electromagn. Compat. EMC-23 377, 1981.Google Scholar
  8. Taflove, A. Computational Electrodynamics – The Finite-Difference Time-Domain Method, Artech House, 1995.Google Scholar
  9. Tartarini, G., R. Stolte and H. Renner, XII Italian Meeting on Electromagnetics (RINEM), Cetraro(CS), Italy, 28 Sep. – 1 Oct. 1998.Google Scholar
  10. Xiao, S., R. Vahldieck and H. Jin. IEEE Microwave and Guided Wave Lett. 2 165, 1992.Google Scholar
  11. Xiao, S., R. Vahldieck and H. Jin. IEEE Microwave and Guided Wave Lett. 3 127, 1993.Google Scholar
  12. Yee, K.S. IEEE Trans. Antennas Propagat. AP-14 302, 1966.Google Scholar
  13. Zhao, A.P., J. Juntunen and A.V. Räisänen IEEE MTT-S Digest TU1D-6 83, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F. Zepparelli
    • 1
  • P. Mezzanotte
    • 1
  • F. Alimenti
    • 1
  • L. Roselli
    • 1
  • R. Sorrentino
    • 1
  • G. Tartarini
    • 2
  • P. Bassi
    • 2
  1. 1.Department of Electronic and Information EngineeringUniversity of PerugiaPerugiaItaly
  2. 2.Department of Electronics, Informatics and SystemisticsUniversity of BolognaBolognaItaly (

Personalised recommendations