Molecular and Cellular Biochemistry

, Volume 183, Issue 1–2, pp 11–23 | Cite as

Inhibition of DNA topoisomerase I activity by heparin sulfate and modulation by basic fibroblast growth factor

  • Ilona Kovalszky
  • József Dudás
  • Julia Oláh-Nagy
  • Gábor Pogány
  • József Töváry
  • József Timár
  • László Kopper
  • András Jeney
  • Renato V. Iozzo


Eukaryotic DNA topoisomerase I catalyzes changes in the superhelical state of duplex DNA by transiently breaking single strands thereby allowing relaxation of both positively and negatively supercoiled DNA. Topoisomerase I is a nuclear enzyme localized at active sites of transcription, and abnormal levels of the enzyme have been observed in a variety of neoplasms. Because the enzyme binds heparin and, given the presence of heparan sulfate within the nuclei of mammalian cells, we sought to investigate the interaction between topoisomerase I and sulfated glycosaminoglycans isolated from normal and neoplastic human liver. The results demonstrated that low concentrations (∼100 nM) of heparan sulfate from normal liver but not from its malignant counterpart effectively blocked relaxation of supercoiled DNA driven by either purified holoenzyme or topoisomerase I activity present in nuclear extracts of three malignant cell lines. Heparin acted at even lower (∼10 nM) concentrations. Moreover, we show that basic fibroblast growth factor could interfere with this heparan sulfate/heparin-driven inhibition and that both basic fibroblast growth factor and heparin-binding sites co-localized in the nuclei of U937 leukemic cells. Our results suggest that DNA topoisomerase I activity may be modulated in vivo by specific heparan sulfate moieties present in normal cells but markedly reduced or absent in their transformed counterparts.

topoisomerase I heparan sulfate glycosaminoglycans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gellert M: DNA topoisomerases. Ann Rev Biochem 50: 879–910, 1981CrossRefPubMedGoogle Scholar
  2. 2.
    Wang JC: DNA topoisomerases. Ann Rev Biochem 54: 665–697, 1985CrossRefPubMedGoogle Scholar
  3. 3.
    Stewart AF, Schültz G: Camptothecin-induced in vivo topoisomerase I cleavages in the transcriptionally active tyrosine aminotransferase gene. Cell 50: 1109–1117, 1987CrossRefPubMedGoogle Scholar
  4. 4.
    Gilmour DS, Elgin SCR: Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin. Mol Cell Biol 7: 141–148, 1987PubMedGoogle Scholar
  5. 5.
    Zhang H, Wang JC, Liu LF: Involvement of DNA topisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci USA 85: 1060–1064, 1988PubMedGoogle Scholar
  6. 6.
    Fleischmann G, Pflugfelder G, Steiner EK, Javaherian K, Howard GC, Wang JC, Elgin SCR: Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc Natl Acad Sci USA 81: 6958–6962, 1984PubMedGoogle Scholar
  7. 7.
    Muller MT, Pfund WP, Mehta VB, Trask DK: Eukaryotic type I topoisomerase is enriched in the nucleolus and catalytically active on ribosomal DNA. EMBO J 4: 1237–1243, 1985PubMedGoogle Scholar
  8. 8.
    Egyházi E, Durban E: Microinjection of anti-topoisomerase I immunoglobulin G into nuclei of chironomus tentans salivary gland cells leads to blockage of transcription elongation. Mol Cell Biol 7: 4308–4316, 1987PubMedGoogle Scholar
  9. 9.
    Kim RA, Wang JC: Function of DNA topoisomerases as replication swivels in saccharomyces cerevisiae.J Mol Biol 208: 257–267, 1989Google Scholar
  10. 10.
    Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R, Potmesil M: DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246: 1046–1048, 1989PubMedGoogle Scholar
  11. 11.
    Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH: The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 85: 271–291, 1993PubMedGoogle Scholar
  12. 12.
    van der Zee AGJ, Hollema H, deJong S, Boonstra H, Gouw A, Willemse PHB, Zijistra JG, deVries EGE: P-glycoprotein expression and DNA topoisomerase I and II activity in benign tumors of the ovary and in malignant tumors of the ovary, before and after platinum/cyclophosphamide chemotherapy. Cancer Res 51: 5915–5920, 1991PubMedGoogle Scholar
  13. 13.
    van der Zee AGJ, deJong S, Keith WN, Hollema H, Boonstra H, deVries EGE: Quantitative and qualitative aspects of topoisomerase I and II03B1; and β in untreated and platinum/cyclophosphamide treated malignant ovarian tumors. Cancer Res 54: 749–755, 1994PubMedGoogle Scholar
  14. 14.
    Matsumoto Y, Fujiwara T, Honjo Y, Sasaoka N, Tsuchida T, Nagao S: Quantitative analysis of DNA topoisomerase I activity in human and rat glioma: Characterization and mechanism of resistance to antitopoisomerase chemical, camptothecin-11. J Surg Oncol 53: 97–103, 1993PubMedGoogle Scholar
  15. 15.
    Gromova II, Kjeldsen E, Svejstrup JQ, Aisner J, Christiansen K, Westergaard O: Characterization of an altered DNA catalysis of a camptothecin-resistant eukaryotic topoisomerase I. Nucleic Acids Res 21: 593–600, 1993PubMedGoogle Scholar
  16. 16.
    Madelaine I, Prost S, Naudin A, Riou G, Lavelle F, Riou J-F: Sequential modifications of topoisomerase I activity in a camptothecin-resistant cell line established by progressive adaptation. Biochem Pharmacol 45: 339–348, 1993CrossRefPubMedGoogle Scholar
  17. 17.
    Camilloni G, Di Martino E, Caserta M, di Mauro E: Eukaryotic DNA topoisomerase I reaction is topology dependent. Nucleic Acids Res 16: 7071–7085, 1988PubMedGoogle Scholar
  18. 18.
    Camilloni G, Di Martino E, di Mauro E, Caserta M: Regulation of the function of eukaryotic DNA topoisomerase I: Topological conditions for inactivity. Proc Natl Acad Sci USA 86: 3080–3084, 1989PubMedGoogle Scholar
  19. 19.
    Stewart L, Ireton GC, Parker LH, Madden KR, Champoux JJ: Biochemical and biophysical analyses of recombinant forms of human topoisomerase I. J Biol Chem 271: 7593–7601, 1996CrossRefPubMedGoogle Scholar
  20. 20.
    Samuels DS, Shimizu Y, Shimizu N: Protein kinase C phosphorylates DNA topoisomerase I. FEBS Lett 259: 57–60, 1989CrossRefPubMedGoogle Scholar
  21. 21.
    Pommier Y, Kerrigan D, Hartman KD, Glazer RI: Phosphorylation of mammalian DNA topoisomerase I and activation by protein kinase C. J Biol Chem 265: 9418–9422, 1990PubMedGoogle Scholar
  22. 22.
    Esther A, Iftach S, Esther P: Inhibition of moloney murine leukemia virus replication by tyrphostins, tyrosine kinase inhibitors. FEBS Lett 341: 99–103, 1994CrossRefPubMedGoogle Scholar
  23. 23.
    Krupitza G, Cerutti P: ADP-ribosylation of ADPR-transferase and topoisomerase I in intact mouse epidermal cells JB6. Biochemistry 28: 2034–2040, 1989PubMedGoogle Scholar
  24. 24.
    Rossi F, Labourier E, Forné T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J: Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381: 80–82, 1996CrossRefPubMedGoogle Scholar
  25. 25.
    Ishii K, Katase A, Andoh T, Seno N: Inhibition of topoisomerase I by heparin. Biochem Biophys Res Commun 104: 541–547, 1982PubMedGoogle Scholar
  26. 26.
    Anderiuzzi D, Pedrini AM: Structural similarities between M. luteus and E. coli DNA topoisomerase I. Biochem Biophys Res Comm 192: 657–664, 1993CrossRefPubMedGoogle Scholar
  27. 27.
    Ishihara M, Fedarko NS, Conrad HE: Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem 261: 13575–13580, 1986PubMedGoogle Scholar
  28. 28.
    Fedarko NS, Conrad HE: A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells. J Cell Biol 102: 587–599, 1986CrossRefPubMedGoogle Scholar
  29. 29.
    Takano H, Kohno K, Ono M, Uchida Y, Kuwano M: Increased phosphorylation of DNA topoisomerase II in etoposide-resistant mutants of human cancer KB cells. Cancer Res 51: 3951–3957, 1991PubMedGoogle Scholar
  30. 30.
    Aviezer D, Levy E, Safran M, Svahn C, Buddecke E, Schmidt A, David G, Vlodavsky I, Yayon A: Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem 269: 114–121, 1994PubMedGoogle Scholar
  31. 31.
    Fedarko NS, Ishihara M, Conrad HE: Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan. J Cell Physiol 139: 287–294, 1989PubMedGoogle Scholar
  32. 32.
    Busch SJ, Martin GA, Barnhart RL, Mano M, Cardin AD, Jackson RL: Trans-repressor activity of nuclear glycosaminoglycans on fos and jun/AP-1 oncoprotein-mediated transcription. J Cell Biol 116: 31–42, 1992CrossRefPubMedGoogle Scholar
  33. 33.
    Grammatikakis N, Grammatikakis A, Yoneda M, Yu Q, Banerjee SD, Toole BP: A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J Biol Chem 270: 16198–16205, 1995CrossRefPubMedGoogle Scholar
  34. 34.
    Esko JD: Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol 3: 805–816, 1991CrossRefPubMedGoogle Scholar
  35. 35.
    Tyrrell DJ, Ishihara M, Rao N, Home A, Kiefer MC, Stauber GB, Lam LH, Stack RJ: Structure and biological activities for a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J Biol Chem 268: 4684–4689, 1993PubMedGoogle Scholar
  36. 36.
    Turnbull JE, Gallagher JT: Heparan sulphate: Functional role as a modulator of fibroblast growth factor activity. Biochem Soc Trans 21: 477–482, 1993PubMedGoogle Scholar
  37. 37.
    Faham S, Hileman RE, Fromm JP, Linhardt RJ, Rees DC: Heparin structure and interactions with basic fibroblast growth factor. Science 271: 1116–1120, 1996PubMedGoogle Scholar
  38. 38.
    Kovalszky I, Pogány G, Molnár G, Jeney A, Lapis K, Karácsonyi S, Szécsény A, Iozzo RV: Altered glycosaminoglycans composition in reactive and neoplastic human liver. Biochem Biophys Res Comm 167: 883–890, 1990PubMedGoogle Scholar
  39. 39.
    Debbage PL, Lange W, Hellmann T, Gabius HJ: Detection of receptors for sulfated polysaccharides in human placenta by biotinylated probes. J Histochem Cytochem 36: 1097–1102, 1988PubMedGoogle Scholar
  40. 40.
    Murata K, Ochiai Y, Akashio K: Polydispersity of acidic glycosaminoglycan components in human liver and the changes at different stages in liver cirrhosis. Gastroenterology 89: 1248–1257, 1985PubMedGoogle Scholar
  41. 41.
    Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976CrossRefPubMedGoogle Scholar
  42. 42.
    Bitter T, Muir HM: A modified uronic acid carbazole reaction. Anal Biochem 4: 330–334, 1962PubMedGoogle Scholar
  43. 43.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989Google Scholar
  44. 44.
    Duguet M, Lavenot C, Harper F, Mirambeau G, De Recondo A-M: DNA topoisomerases from rat liver: Physiological variations. Nucleic Acids Res 11: 1059–1075, 1983PubMedGoogle Scholar
  45. 45.
    Sullivan DM, Latham MD, Rowe TC, Ross WE: Purification and characterization of an altered topoisomerase II from a drug-resistant Chinese hamster ovary cell line. Biochemistry 28: 5680–5687, 1989PubMedGoogle Scholar
  46. 46.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970PubMedGoogle Scholar
  47. 47.
    Volpi N, Cusmano M, Venturelli T: Qualitative and quantitative studies of heparin and chondroitin sulfates in normal human plasma. Biochim Biophys Acta 1243: 49–58, 1995PubMedGoogle Scholar
  48. 48.
    Folkman J, Shing Y: Angiogenesis. J Biol Chem 267: 10931–10934, 1992PubMedGoogle Scholar
  49. 49.
    Iozzo RV, Bolender RP, Wight TN: Proteoglycan changes in the intercellular matrix of human colon carcinoma. Lab Invest 47: 124–138, 1982PubMedGoogle Scholar
  50. 50.
    Iozzo RV, Cohen I: Altered proteoglycan gene expression and the tumor stroma. Experientia 49: 447–455, 1993PubMedGoogle Scholar
  51. 51.
    Gallagher JT: The extended family of proteoglycans: Social residents of the pericellular zone. Curr Opin Cell Biol 1: 1201–1218, 1989PubMedGoogle Scholar
  52. 52.
    Iozzo RV: Presence of unsulfated heparan chains on the heparan sulfate proteoglycan of human colon carcinoma cells. Implications for heparan sulfate proteoglycan biosynthesis. J Biol Chem 264: 2690–2699, 1989PubMedGoogle Scholar
  53. 53.
    Esko JD, Rostand KS, Weinke JL: Tumor formation dependent on proteoglycan biosynthesis. Science 241: 1092–1096, 1988PubMedGoogle Scholar
  54. 54.
    Hiscock DR, Yanagishita M, Hascall VC: Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells. J Biol Chem 287–294, 1989Google Scholar
  55. 55.
    Moczar E, Raulais D, Poupon MF, Moczar M: Heparin-binding sites of rhabdomyoma cells with low and high metastatic capacity. Invasion Metastasis 11: 158–165, 1991PubMedGoogle Scholar
  56. 56.
    Sanderson RD, Tumbull JE, Gallagher JT, Lander AD: Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J Biol Chem 269: 13100–13106, 1994PubMedGoogle Scholar
  57. 57.
    Lee MK, Lander AD: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: Development of a sensitive electrophoretic approach. Proc Natl Acad Sci USA 88: 2768–2772, 1991PubMedGoogle Scholar
  58. 58.
    Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT: Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267: 10337–10341, 1992PubMedGoogle Scholar
  59. 59.
    Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT: Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269: 11216–11223, 1994PubMedGoogle Scholar
  60. 60.
    Riccio A, Pedone PV, Lund LR, Olesen T, Olsen HS, Andreasen PA: Transforming growth factor β1-responsive element: Closely associated binding sites for USF and CAAT-binding transcription factor-nuclear factor I in the type I plasminogen activator inhibitor gene. Mol Cell Biol 12: 1846–1855, 1992PubMedGoogle Scholar
  61. 61.
    Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848, 1991PubMedGoogle Scholar
  62. 62.
    Hill DJ, Logan A: Cell cycle-dependent localization of immunoreactive basic fibroblast growth factor to cytoplasm and nucleus of isolated ovine fetal growth plate chondrocytes. Growth Factors 7: 215–231, 1992PubMedGoogle Scholar
  63. 63.
    Presta M, Gualandris A, Urbinati C, Rusnati M, Coltrini D, Isacchi A, Caccia P, Bergonzoni L: Subcellular localization and biology activity of Mr 18,000 basic fibroblast growth factor: Site-directed mutagenesis of a putative nuclear translocation sequence. Growth Factors 9: 269–278, 1993PubMedGoogle Scholar
  64. 64.
    Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL: Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood 81: 631–638, 1993PubMedGoogle Scholar
  65. 65.
    Renko M, Quarto N, Morimoto T, Rifkin NB: Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol 144: 108, 1990Google Scholar
  66. 66.
    Tessier S, Neufeld G: Basic fibroblast growth factor accumulates in the nuclei of various bFGF-producing cell types. J Cell Physiol 145: 310, 1990PubMedGoogle Scholar
  67. 67.
    Riese J, Zeller P, Dono R: Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech Develop 49: 13–22, 1995Google Scholar
  68. 68.
    Rifkin DB, Moscatelli D, Roghani M, Nagano Y, Quarto N, Klein S, Bikfalvi A: Studies on FGF-2: Nuclear localization and function of high molecular weight forms and receptor binding in the absence of heparin. Mol Repro Dev 39: 102–105, 1994Google Scholar
  69. 69.
    Vilgrain I, Gonzalez AM, Baird A: Phosphorylation of basic fibroblast growth factor (FGF-2) in the nuclei of SK-Hep-1 cells. FEBS Lett 331: 228–232, 1993PubMedGoogle Scholar
  70. 70.
    Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin collagenase, plasmin and heparanases. J Biol Chem 271: 10079–10086, 1996PubMedGoogle Scholar
  71. 71.
    Iozzo RV, Cohen IR, Grässel S, Murdoch AD: The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302: 625–639, 1994PubMedGoogle Scholar
  72. 72.
    Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A: Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79: 1005–1013, 1994PubMedGoogle Scholar
  73. 73.
    Aviezer D, Iozzo RV, Noonan DM, Yayon A: Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense CDNA. Mol Cell Biol 17: 1938–1946, 1997PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ilona Kovalszky
    • 1
  • József Dudás
    • 1
  • Julia Oláh-Nagy
    • 1
  • Gábor Pogány
    • 1
  • József Töváry
    • 1
  • József Timár
    • 1
  • László Kopper
    • 1
  • András Jeney
    • 1
  • Renato V. Iozzo
    • 2
    • 3
  1. 1.First Institute of Pathology and Experimental Cancer ResearchSemmelweis Medical UniversityBudapestHungary
  2. 2.Department of Pathology, Anatomy and Cell BiologyJefferson Medical College, Thomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations