Social Indicators Research

, Volume 44, Issue 1, pp 41–69

A Hierarchical Ordinal Probit Model for the Analysis of Life Satisfaction in Italy

  • Carla Rampichini
  • Silvana Schifini d'Andrea


The aim of this paper is to study the individual and contextual determinants of life satisfaction in Italy. A hierarchical probit model is proposed for studying data with group structure and an ordinal response variable. The group structure is defined by the presence of micro observations embedded with regional contexts (macro observations), and the specification is at both of these levels. The methodology is applied to Eurobarometer survey data, with individuals viewed as micro observations and regions as macro observations. We find that Italy is not an homogeneous country with respect to life satisfaction, and that the regional environment contributes with the observed and unobserved characteristics of the individuals to life satisfaction level.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin M. and N. Longford: 1986, 'Statistical modelling issues in school effectiveness studies' Journ. Royal Statitst. Soc. A 149, part 1, pp. 1–43.Google Scholar
  2. Anderson D. A. and M. Aitkin: 1985, 'Variance component models with binary response: interviewer variability' Journ. Royal Statitst. Soc. B 47, pp. 203–210.Google Scholar
  3. Andrews F. M. and S. B. Withey: 1976, Social Indicators of well-being (Plenum press, New York).Google Scholar
  4. Campbell A., Converse P. E. and W. Rodgers: 1976, The Quality of American Life (Russel Sage Foundation, New York).Google Scholar
  5. Commisson of the European Community: 1992, Eurobarometer, Trends 1974–1991 (Bruxelles).Google Scholar
  6. Davis E., Fine-Davis M. and G. Meehan: 1982, 'Demographic determinants of perceived well-being in eight European countries', Social Indicators Research 10, pp. 341–358.Google Scholar
  7. Diener E. and C. Diener: 1995, 'The perceived quality of life in Norway: regional variations and contextual effects', Social Indicators Research 36, pp. 275–286.Google Scholar
  8. European Commission: 1991, Eurobarometer, Report on Stadard Eurobarometer 34 (Bruxelles).Google Scholar
  9. European Commission: 1992, Eurobarometer, Report on Stadard Eurobarometer 36 (Bruxelles).Google Scholar
  10. Eurostat: 1996, Regions Statistical Yerbook 1995 (Bruxelles, Luxembourg).Google Scholar
  11. Goldstein H. and M. J. R. Healy: 1995, 'The graphical presentation of a collection of means' Journ. Royal Statitst. Soc. A 158, pp. 175–177.Google Scholar
  12. Goldstein H. and D. J. Spiegelhalter: 1996, 'League tables and their limitations: Statistical issues in comparisons of institutional performance' Journ. Royal Statitst. Soc. A 159, pp. 385–443.Google Scholar
  13. Gori E.: 1992, 'La valutazione dell'efficienza ed efficacia dell'istruzione', SIS, Atti della XXXVI riunione scientifica 1, pp. 219–230.Google Scholar
  14. Gori E. and C. Rampichini: 1996, 'Modelli a componenti di varianza con risposta ordinale', SIS, Atti della XXXVI Riunione Scientifica 2, pp. 481–488.Google Scholar
  15. Hedeker D. and D. Gibbons: 1994, 'A random-effects ordinal regression model for multilevel analysis', Biometrics 50, pp. 933–944.Google Scholar
  16. Inglehart R. and J. R. Rabier: 1984, 'Du bonheur...Sentiment personnel et norme culturelle', Futuribles 81, pp. 3–27.Google Scholar
  17. ISTAT: 1993, Annuario Statistico Italiano (ISTAT, Roma).Google Scholar
  18. ISTAT: 1995, Annuario Statistico Italiano (ISTAT, Roma).Google Scholar
  19. Jansen J.: 1991, 'On the statistical analysis for ordinal data when extravariation is present', Applied Statistics 39, pp. 75–84.Google Scholar
  20. Longford N. T.: 1993, Random Coefficient Models (Claredon Press, Oxford).Google Scholar
  21. Maddala G. S.: 1983, Limited Dependent And Qualitative Variables (Cambridge University Press, Cambridge).Google Scholar
  22. Mastekaasa A. and T. Moum: 1984, 'The perceived quality of life in Norway: regional variations and contextual effects', Social Indicators Research 14, pp. 385–419Google Scholar
  23. Meadow H. L., J. T. Mentzer, D. R. Rahtz and M. J. Sirgy: 1992, 'A life satisfaction measure based on judgment theory', Social Indicators Research 26, pp. 23–59.Google Scholar
  24. Michalos A.: 1985, 'Multiple discrepancies theory (MDT)', Social Indicators Research 16, pp. 347–413.Google Scholar
  25. Qu Y., Piedmonte M.R. and S.V. Medendrop: 1995, 'Latent variable models for clustered ordinal data', Biometrics 51, pp. 268–275.Google Scholar
  26. Rampichini C.: 1992, 'Metodi Statistici per la valutazione dell'efficienza ed efficacia dei corsi di Formazione Professionale', Working Papers 38 (Dipartimento Statistico, Università di Firenze).Google Scholar
  27. Requena F.: 1995, 'Friendship and subjective well-being in Spain: a cross-national comparison with the United States', Social Indicators Research 35, pp. 271–288.Google Scholar
  28. Schulz W.: 1995, 'Multiple-discrepancies theory versus resource theory', Social Indicators Research 34, pp. 153–169Google Scholar
  29. Sirgy M. J., D. Cole, R. Kosenko, H. L. Meadow, D. Rahtz, M. Cicic, G. Xi Jin, D. Yarsuvat, D. L. Blenkhorn and N. Nagpal: 1995, 'A life satisfaction measure: Additional validational data for the congruity life satisfaction measure', Social Indicators Research 34, pp. 237–259.Google Scholar
  30. Steel D. J. and D. Holt: 1996, 'Analysing and adjusting aggregation effects: the ecological fallacy revisited', Int. Stat. Rev. 64, pp. 39–60.Google Scholar
  31. Stones M. J., T. Hadjistavropoulos, H. Tuuko and A. Kozma: 1995, 'Happiness has trait-like and statelike properties: A reply to Veenhoven', Social Indicators Research 36, pp. 129–144.Google Scholar
  32. Veenhoven R.: 1994, 'Is happiness a trait? Tests of the theory that a better society does not make people any happier', Social Indicators Research 33, pp. 101–160.Google Scholar
  33. Veenhoven R.: 1996, 'Developments in satisfaction-research', Social Indicators Research 37, pp. 1–45.Google Scholar
  34. Veenhoven R. and J. Ehrhardt: 1995, 'The cross-national pattern of happiness: Test of predictions implied in three theories of happiness', Social Indicators Research 34, pp. 33–68.Google Scholar
  35. Wong G. Y. and W.M. Mason: 1985, 'A hierarchical logistic regression model for multilevel analysis', JASA 80, pp. 513–524.Google Scholar
  36. Zeger S. L. and R. M. Karim: 1991, 'Generalized linear models with random effects: A Gibbs sampler approach', J. Am. Statist. Ass. 86, pp. 79–86.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Carla Rampichini
    • 1
  • Silvana Schifini d'Andrea
    • 1
  1. 1.Department of Statistics "G. Parenti"University of FlorenceFlorenceItaly

Personalised recommendations