Molecular and Cellular Biochemistry

, Volume 167, Issue 1–2, pp 1–29 | Cite as

Biochemistry of peroxisomes in health and disease

  • Inderjit Singh


The ubiquitous distribution of peroxisomes and the identification of a number of inherited diseases associated with peroxisomal dysfunction indicate that peroxisomes play an essential part in cellular metabolism. Some of the most important metabolic functions of peroxisomes include the synthesis of plasmalogens, bile acids, cholesterol and dolichol, and the oxidation of fatty acids (very long chain fatty acids > C22, branched chain fatty acids (e.g. phytanic acid), dicarboxylic acids, unsaturated fatty acids, prostaglandins, pipecolic acid and glutaric acid). Peroxisomes are also responsible for the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen species (e.g. O-2 and H2O2). Peroxisomal diseases result from the dysfunction of one or more peroxisomal metabolic functions, the majority of which manifest as neurological abnormalities. The quantitation of peroxisomal metabolic functions (e.g. levels of specific metabolites and/or enzyme activity) has bec ome the basis of clinical diagnosis of diseases associated with the organelle. The study of peroxisomal diseases has also contributed towards the further elucidation of a number of metabolic functions of peroxisomes. (Mol Cell Biochem 167:1-29, 1997)

peroxisomes peroxisomal diseases fatty acid β-oxidation fatty acid α-oxidation bile acids and plasmalogen H2O2 metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rhodin J: Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Doctoral thesis, Karolinska Institute, Stockholm, Akitbolaget, Godvil,1954Google Scholar
  2. 2.
    Rouiller C, Bernard W: 'Microbodies' and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol 2: 355–359, 1956Google Scholar
  3. 3.
    Breidenbach RW, Beevers H: Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27: 462–469, 1967Google Scholar
  4. 4.
    de Duve C, Baudhuin P: Peroxisomes (microbodies and related particles). Physiol Rev 46: 323–357, 1966Google Scholar
  5. 5.
    de Duve C: Microbodies in the living cell. Sci Am 248: 74–84, 1983Google Scholar
  6. 6.
    Van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM: Bio-chemistry of peroxisomes. Ann Rev Biochem 61: 157–197, 1992Google Scholar
  7. 7.
    Mannaerts GP, van Veldhoven PP: Metabolic pathways in Mammalian Peroxisomes. Biochimie 75: 147–158, 1993Google Scholar
  8. 8.
    Singh I: Peroxisomes in biology and medicine. In: SK Malhotra (ed). Advances in Structural Biology. Jai Press Inc, Greenwich, Conn: 1994, 137–156Google Scholar
  9. 9.
    Schutgens RB, Heymans HS, Wanders RJA, van den Bosch H, Tager JM: Peroxisomal disorders: a newly recognised group of genetic diseases. Eur J Pediatr 144: 430–440, 1986Google Scholar
  10. 10.
    Moser HW: Peroxisomal Diseases. Adv Hum Gen 21: 1–106, 443–451, 1993Google Scholar
  11. 11.
    Brown FR, Voigt R, Singh AK, Singh I: Peroxisomal disorders: Neurodevelopmental aspects. Am J Dis Child 147: 617–626, 1993Google Scholar
  12. 12.
    Singh I: Mammalian peroxisomes: Metabolism of oxygen and reactive oxygen species. Ann NY Acad Sci: In PressGoogle Scholar
  13. 13.
    Gorgas K: Serial section analysis of mouse hepatic peroxisomes. Anat Embryol 172: 21–32, 1985Google Scholar
  14. 14.
    Novikoff AB, Shin WY: The endoplasmic reticulum in the golgi zone and its relations to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J Microse 3: 187–206, 1964Google Scholar
  15. 15.
    Roels F, Cornelis A: Heterogeneity of catalase staining in human hepatocellular peroxisomes. Histochem and Cytochem 37: 331–337, 1989Google Scholar
  16. 16.
    Hruban Z, Rechcigl M: Microbodies and related particles. Int Rev Cytol, Academic Press, New York: 296, 1969Google Scholar
  17. 17.
    Hruban Z, Vigil EL, Slesers A, Hopkins E: Microbodies: Constituent organelles of animal cells. Lab Invest 27: 184–191, 1972Google Scholar
  18. 18.
    Blouin A, Bolender RP, Weibel R: Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver paranchyma. A stereological study. J Cell Biol 72: 441–455, 1977Google Scholar
  19. 19.
    Holzmann E: Peroxisomes in nervous tissue. Ann NY Acad Sci 386: 523–535, 1982Google Scholar
  20. 20.
    Usuda N, Reddy KM, Hashimoto T, Rao SM, Reddy JK: Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest 58: 100–111, 1988Google Scholar
  21. 21.
    Angermuller S, Bruder G, Volkl A, Wesch H, Fahimi HD: Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur J Cell Biol 45: 137–144, 1987Google Scholar
  22. 22.
    Zaar K, Volkl A, Fahimi HD: Purification of marginal plates from bovine renal peroxisomes: Identification with L-alpha-hydroxyacid oxidase B. J Cell Biol 113: 113–121, 1991Google Scholar
  23. 23.
    Gorgas K: Serial section analysis of proximal shape and membrane relationship in the mouse prepucial gland. In: HD Fahimi, H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, Heidelberg: 1987, 3–17Google Scholar
  24. 24.
    Yamamoto L, Fahimi HD: Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: Evidence of interconnections between heterogeneous segments. J Cell Biol 105: 713–722, 1987Google Scholar
  25. 25.
    Van Veldhoven PP, Just WW, Mannaerts GP: Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem 262: 4310–4318, 1987Google Scholar
  26. 26.
    Lazarow PB, Fujiki Y: Biogenesis of Peroxisomes. Annu Rev Cell Biol 1: 489–530, 1985Google Scholar
  27. 27.
    Fujiki Y, Fowler S, Shio H, Hubbard AL, Lazarow PB: Polypep-tide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mito-chondrial membranes. J Cell Biol 93: 103–110, 1982Google Scholar
  28. 28.
    Luers G, Beier K, Hashimoto T, Fahimi HD, Volkl A: Biogenesis of peroxisomes: Sequential biosynthesis of the membrane and matrix proteins in the course of hepatic regeneration. Eur J Cell Biol 52: 175–184, 1990Google Scholar
  29. 29.
    Baumgart E, Volkl A, Hashimoto T, Fahimi HD: Biogenesis of peroxisomes: Immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops. J Cell Biol 108: 2221–2231, 1989Google Scholar
  30. 30.
    Fahimi HD, Baumgart E, Volkl A: Ultrastructural aspects of the biogenesis of peroxisomes in rat liver. Biochimie 75: 201–208, 1993Google Scholar
  31. 31.
    Heinemann P, Just WW: Peroxisomal protein import. In vivo evidence for a novel translocation component compartment. FEBS Letts 300: 179–182, 1992Google Scholar
  32. 32.
    Wilcke M, Hultenby K, Alexson SEH: Novel peroxisomal populations in subcellular fractions from rat liver. J Biol Chem 270: 6949–6958, 1995Google Scholar
  33. 33.
    Singh AK, Gulati S: Effect of ischemia-reperfusion injury on the morphology of peroxisomes. Mol Cell Biochem 144: 19–26, 1995Google Scholar
  34. 34.
    Fujiki Y, Rachubinski RA, Martensen RM, Lazarow PB: Synthesis of 3-ketoacyl-CoA thiolase of rat liver peroxisomes on free polyribosomes as a larger precursor. Biochem J 226: 697–704, 1985Google Scholar
  35. 35.
    Osumi T, Fujiki Y: Topogenesis of peroxisomal proteins. Bio Essays 12: 217–222, 1990Google Scholar
  36. 36.
    de Hoop MJ, Ab G: Import of proteins into peroxisomes and other microbodies. Biochem J 286: 657–669, 1992Google Scholar
  37. 37.
    Subramani S: Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9: 445–478, 1993Google Scholar
  38. 38.
    Perdue PE, Lazarow PB: Peroxisomal biogenesis: Multiple path-way for protein imports. J Biol Chem 269: 30065–30068, 1994Google Scholar
  39. 39.
    Gould SJ, Keller GA, Subramani S: Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105: 2923–2931, 1987Google Scholar
  40. 40.
    Miyaznwa S, Osumi T, Hashimoto T, Ohno K, Miura S, Fujiki Y: Peroxisome targeting signal of rat liver acyl-coenzyme A oxi-dase resides at the carboxy terminus. Mol Cell Biol 9: 83–91, 1989Google Scholar
  41. 41.
    Slawecki ML, Dodt G, Steinberg S, Moser AB, Moser HW, Gould SJ: Identification of three peroxisomal import defects in patients with peroxisome biogenesis disorders. J Cell Sci 108: 1817–1829, 1995Google Scholar
  42. 42.
    Swinkles BW, Gould SJ, Bodnar AJ, Rachubiuski RA, Subramani S: A novel cleavable targeting signal at the amino terminus of the rat 3-ketoacyl-CoA thiolase. Embo J 10: 3255–3262, 1991Google Scholar
  43. 43.
    Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S: A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108: 1657–1664, 1989Google Scholar
  44. 44.
    Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T, Fujiki Y: Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J Biol Chem 267: 14405–14411, 1992Google Scholar
  45. 45.
    Imanaka T, Small G, Lazarow P: Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105: 2915–1922, 1987Google Scholar
  46. 46.
    Soto U, Pepperkok R, Ansorge W, Just W: Import of firefly luciferase into mammalian peroxisomes in vivo requires nucleotide triphosphate. Expt Cell Res 205: 66–75, 1993Google Scholar
  47. 47.
    Wendland M, Subramani S: Cytosol-dependent peroxisomal protein import in permealized cell system. J Cell Biol 120: 675–685, 1993Google Scholar
  48. 48.
    Walton P, Wendland M, Subramani S, Rachubinski S, Welch W: Involvement of 70 kDa heat shock proteins in peroxisomal import. J Cell Biol 125: 1037–1046, 1994Google Scholar
  49. 49.
    Glover JR, Andrews DW, Subramani S, Rachubinski R: Mutagenesis of the amino targeting signal of saccharomyces cerevisae 3-ketoacyl-CoA thiolase reveals conserved amino acid required for import into peroxisomes in vivo. J Biol Chem 269: 7558-7563, 1994Google Scholar
  50. 50.
    Singh I, Lazo O, Contreras M, Stanley W, Hashimoto T: Rhizomelic chondrodysplasia punctata: biochemical studies of peroxisomes isolated from cultured skin fibroblasts. Arch Biochem Biophys 286: 277–283, 1991Google Scholar
  51. 51.
    Heikoop JC, Van Roermund CW, Just WW, Ofman R, Schutgens RB, Heymans HS, Wanders RJ, Tager JM: Rhizomelic chondrod-ysplasia punctata. Deficiency of 3-oxoacyl-coenzyme A thiolase in peroxisomes and impaired processing of the enzyme. J Clin Invest 86: 126–130, 1990Google Scholar
  52. 52.
    Contreras M, Singh I, Yasutake A, Yoshida Y: Peroxisomal transport tripeptide signal and biogenesis of peroxisomes. Trans Am Soc Neurochem 22: A56, 1991Google Scholar
  53. 53.
    Rehling P, Marzioch M, Niesen F, Wittke E, Veenhuis M, Kunau W-H: The import receptor of the peroxisomal targeting signal-2 (PTS-2) in saccharomyces cerevisiae is encoded by the PAS 7 gene. Embo J 15: 2901–2913, 1996Google Scholar
  54. 54.
    Fransen M, Brees C, Baumgart E, Vanhooren CT, Baes M, Mannaerts GP, Van Veldhoven PP: Identification and characterization of human peroxisomal C-terminal targeting signal import receptor. J Biol Chem 270: 7731–7736, 1995Google Scholar
  55. 55.
    Dodt G, Braverman N, Wong C, Moser A, Moser HW et al.: Mutation in the PTS-1 receptor gene, PXR1, define complimentation group 2 of the peroxisome biogenesis disorders. Nature 9: 115–125, 1995Google Scholar
  56. 56.
    Moser AE, Rasmussen M, Naidu S, Watkins P, McGuinness M, Hajra AK et al.: Phenotype of patients with peroxisomal disorders subdivided into 16 complimentation groups. J Pediatr 127: 13–22, 1995Google Scholar
  57. 57.
    Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ: The peroxisome biogenesis disorder group 4 gene, PxAAA1, encodes a cytoplasmic ATPase required for stability of the PTS-1 receptor. Embo J 15: 2914–2923, 1996Google Scholar
  58. 58.
    Skerjanc IS, Sheffield WP, Randall SK, Sivius JR, Shore GC: Import of precursor proteins into mitochondria:site of polypeptide unfolding. J Biol Chem 265: 9444–9451, 1990Google Scholar
  59. 59.
    Walton PA, Hill PE, Subramani S: Import of stably folded proteins into peroxisomes. Mol Biol Cell 6: 675–683, 1995Google Scholar
  60. 60.
    McCammon MT, McNew JA, Willy PJ, Goodman JM: An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes. J Cell Biol 124: 915–925, 1994Google Scholar
  61. 61.
    Santos MJ, Kawada ME, Espeel M, Figueroa C, Alvarez A, Hidaldo U, Metz C: Characterization of human peroxisomal membrane proteins. J Biol Chem 269: 24890–24896, 1994Google Scholar
  62. 62.
    Hardeman D, Versantvoort C, Van den Brink JM, Van den Bosch H: Studies on peroxisomal membranes. Biochim Biophys Acta 1027: 149–154, 1990Google Scholar
  63. 63.
    Kyrklund T, Meijer J: Lipid composition of liver peroxisomes isolated from untreated and clofibrate-treated mice and rat. Comp Biochem Physiol 109: 665–673, 1994Google Scholar
  64. 64.
    Rao SM, Reddy JK: The relevance of peroxisome proliferation and cell proliferation in peroxisome proliferator-induced hepato-carcinogenesis. Drug Metab Rev 21: 103–110, 1989Google Scholar
  65. 65.
    Moody DE, Reddy JK, Lake BG, Popp JA, Reese DH: Peroxisome proliferation and nongenotoxic carcinogenesis: Commentary on a symposium. Fundam Appl Toxicol 16: 223–248, 1991Google Scholar
  66. 66.
    Green S: Receptor-mediated mechanisms of peroxisome proliferators. Biochem Pharmacol 43: 393–401, 1992Google Scholar
  67. 67.
    Bentley P, Calder I, Elcombe C, Stringer D, Wiegand H-J: Hepatic peroxisome proliferation in rodents and its significance in humans. Fd Chem Toxicol 31: 857–907, 1993Google Scholar
  68. 68.
    Reddy JK, Reddy MK, Usman MI, Lalwani ND, Rao MS: Comparison of hepatic peroxisome proliferative effect and its implication for hepatocarcinogenicity of phthalate esters, di(2-ethylhexyl) phthlate and di(2-ethylhexyl) adipate with a hypolipidemic drug. Environ Health Prospect 65: 317–327, 1986Google Scholar
  69. 69.
    Lake BG: Mechanism of hepatocarcinogenicity of peroxisome-proliferating drugs and chemicals. Annu Rev Pharm Toxicol 35: 483–507, 1995Google Scholar
  70. 70.
    Isseman I, Green S: Activation of a number of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650, 1990Google Scholar
  71. 71.
    Dreyer C, Kray G, Keller H, Givel F, Helftenbein G, Wahli W: Control of peroxisomal b-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68: 879–887, 1992Google Scholar
  72. 72.
    Muerhoff AS: The peroxisome proliferator-activated receptor mediates the induction of cyp4A6, a cytochrome P-450 fatty acid omega hydroxylase, by clofibric acid. J Biol Chem 267: 19051–19053, 1992Google Scholar
  73. 73.
    Osumi T, Wen JK, Hashimoto T: Two cis-acting regulatory sequences in the peroxisome proliferator responsive enhance region of rat acyl-CoA oxidase gene. Biochem Biophys Res Commun 175: 866–871, 1991Google Scholar
  74. 74.
    Tugwood JD: The mouse peroxisome proliferator activated receptor recognises a response element in the 5'flanking sequence of the rat acyl-CoA oxidase gene. EMBO J 11: 433–439, 1992Google Scholar
  75. 75.
    Numali MR, Usuda N, Reddy MK, Oyasu K, Hashimoto T, Osumi T, Rao MS, Reddy JK: Comparison of conservative and inducible levels of expression of peroxisomal beta-oxidation and catalase genes in liver and extrahepatic tissues of the rat. Cancer Res 48: 5316–5324, 1988Google Scholar
  76. 76.
    Isseman, I, Prince RA, Tugwood JD Green S: The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochemie 75: 251–256, 1995Google Scholar
  77. 77.
    Bardot O, Aldridge TC, Latruffe N, Green S: PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192: 37–45, 1993Google Scholar
  78. 78.
    Chen F, Law SW, O'Malley BW: Identification of two mPPAR related receptors and the evidence for the five superfamily members. Biochem Biophys Res Commun 196: 671–677, 1993Google Scholar
  79. 79.
    Gottlicher M, Widmark E, Li Q, Gustafsson JA: Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci (USA) 89: 4653–4657, 1992Google Scholar
  80. 80.
    Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA: Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acid. Mol Endocrinol 6: 1634–1641, 1992Google Scholar
  81. 81.
    Zhu Y, Alvares K, Huang O, Rao MS, Reddy JK: Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268: 26817–26820, 1993Google Scholar
  82. 82.
    Sher T, Yi H-F, McBride W, Gonzalez F: cDNA cloning, chromosomal mapping and functional characterization of the human peroxisomal proliferator activated receptor. Biochem 32: 5598–5604, 1993Google Scholar
  83. 83.
    Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W: Control of the peroxisomal b-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68: 879–887, 1992Google Scholar
  84. 84.
    Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM: Differential expression and activation of a family of murine peroxisome proliferator-activated receptor. Proc Natl Acad Sci (USA) 91: 7355–7359, 1994Google Scholar
  85. 85.
    Berge RK, Aarsland A, Omundsen H, Aasaether N, Male R: The relationship between the levels of long chain acyl-CoA and clofi-brate-CoA and the induction of peroxisomal b-oxidation. In: HD Fahimi and H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, 1987, 273–276Google Scholar
  86. 86.
    Lock EA: Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharm Toxicol 29: 145–163, 1989Google Scholar
  87. 87.
    Elcombe CR: Peroxisome proliferation due to di (2-ethyl) phtha-late (DEHP): Species differences and possible mechanisms. Environ Health Prospect 70: 211–219, 1986Google Scholar
  88. 88.
    Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM: Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774, 1992Google Scholar
  89. 89.
    Reisenbicher H, Eckl PM: Genotype effects of selected peroxisome proliferators. Mutat Res 286: 135–144, 1993Google Scholar
  90. 90.
    Bardot O, Aldridge TC, Latruffe N, Green S: PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochim Biophys Res Commun 192: 37–45, 1993Google Scholar
  91. 91.
    Miyata KS, Zhang B, Marcus SL, Capone JP, Rachubinski RA: Chicken ovalbumin upstream promoter transcription factor (COUP-TF) binds to a peroxisome proliferator-responsive element and antagonizes peroxisome proliferator-mediated signaling. J Biol Chem 268: 19169–19172, 1993Google Scholar
  92. 92.
    Hwang J-J, Hsia MT, Jirtle RL: Induction of sister chromatid exchange and micronuclei in primary cultures of rat and human hepatocytes by the peroxisome proliferator, Wy-14, 643. Mutat Res 286: 123–133, 1993Google Scholar
  93. 93.
    Tsutsui T, Watnabe E, Barrett JC: Ability of peroxisome proliferators to induce cell transformation, chromosome aberrations and peroxisome proliferation in cultured Syrian hamster embryo cells. Carcin 14: 611–618, 1993Google Scholar
  94. 94.
    Elliott BM, Dodd NJ, Elcombe CR: Increased hydroxyl radical production in liver peroxisomal fractions from rats treated with peroxisome proliferators. Carcin 7: 795–799, 1986Google Scholar
  95. 95.
    Reddy JK, Goel SK, Nemali MR, Carrino JJ, Laffler TG, Reddy MK, Sperbeck SJ, Osumi T, Hashimoto T, Lalwani ND et al.: Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci (USA) 83: 1747–1751, 1986Google Scholar
  96. 96.
    Dhaunsi GS, Singh I, Orak JK, Singh AK: Antioxidant enzymes in ciprofibrate-induced oxidative stress. Carcin 15: 1923–1930, 1994Google Scholar
  97. 97.
    Pahan K, Smith B, Singh AK, Singh I: Cytochrome P-450 in peroxisomes: Downregulation in ischemia-reperfusion induced oxidative stress. SubmittedGoogle Scholar
  98. 98.
    Wu H, Masset-Brown J, Tweedie DJ, Milewich L, Frenkel RA, Martin-Wixtrom C, Estabrook RW, Prough RA: Induction of microsomal NADPH-cytochrome P-450 reductase and cyto-chrome P-450IVA1 (P-450LA omega) by dehydroepian-drosterone in rats: A possible peroxisomal proliferator. Cancer Res 49: 2337–2343, 1989Google Scholar
  99. 99.
    Randernath E, Randernath K, Reddy R, Danna TF, Rao MS, Reddy JK: Induction of rat liver DNA alterations by chronic administration of peroxisome proliferators as detected by 32P-postlabeling. Mutat Res 247: 64–76, 1991Google Scholar
  100. 100.
    Kasai H, Okada Y, Nishimura S, Rao MS, Reddy JK: Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res 49: 2603–2605, 1989Google Scholar
  101. 101.
    Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y: Production of 8-hydroxydeoxyguanosine in rodent liver by the ad-ministration of peroxisome proliferators. In: G Gibson and B Lake (eds). Peroxisomes: Biology and Importance in Toxicology and Medicine. Taylor and Francis, London, 1993, 569–594Google Scholar
  102. 102.
    Hajra AK, Bishop JE: Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann NY Acad Sci 386: 170–182, 1982Google Scholar
  103. 103.
    Lazarow PB, de Duve C: A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci 73: 2043–2046, 1976Google Scholar
  104. 104.
    Lazarow PB: Rat liver peroxisomes catalyze the Beta-oxidation of fatty acids. J Biol Chem 253: 1522–1528, 1978Google Scholar
  105. 105.
    Singh I, Moser AE, Goldfischer S, Moser HW: Lignoceric acid is oxidized in the peroxisome: Implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci (USA) 81: 4203–4207, 1984Google Scholar
  106. 106.
    Singh RP, Singh I: Peroxisomal oxidation of lignoceric acid in rat brain. Neurochem Res 11: 281–289, 1986Google Scholar
  107. 107.
    Gebhard R: Metabolic zonation of the liver: regulation and implications for liver functions. Pharmacol Ther 53: 275–354, 1992Google Scholar
  108. 108.
    Bass NM: Organization and zonation of hepatic lipid metabolism. Cell Biol Rev 19: 61–89, 1989Google Scholar
  109. 109.
    Lindauer M, Beier K, Volkl A, Fahimi HD: Zonal heterogeneity of peroxisomal enzymes in rat liver: Differential induction by three divergent hypolipidemic drugs. Hepatol 20: 475–486, 1994Google Scholar
  110. 110.
    Lazarow PB, Moser HW: Disorders of peroxisome biogenesis. In: CR Scriver, AL Beaudet, WS Sly, D Valle, D McGraw-Hill, (eds). The Metabolic Basis of Inherited Diseases. 6th Edn. 1989, 479–1509Google Scholar
  111. 111.
    Lynen F: The pathway from 'activated acetic acid' to the terpenes and fatty acids. In: Physiology or Medicine Nobel Lecturers 1963–1970. American Elsevier, New York, 1973, 103–108Google Scholar
  112. 112.
    Cooper TG, Beever H: Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244: 3514–3520, 1969Google Scholar
  113. 113.
    Pedersen JI, Gustaffson J: Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett. 121: 345–348, 1980Google Scholar
  114. 114.
    Vamecq J: Liver peroxisomal oxidizing activities in physiologi cal and pathological conditions. In: HD Fahimi and H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, Heidelberg, 1987, 364–373Google Scholar
  115. 115.
    Yamada J, Itoh S, Horie S, Watanabe T, Suga T: Chain-shorten-ing of a xenobiotic acyl compound by the peroxisomal beta-oxidation system in rat liver. Biochem Pharmacol 35: 4363–4368, 1986Google Scholar
  116. 116.
    Diczfalusy UG, Alexson SEH: Peroxisomal chain-shortening of prostaglandin F2 alpha. J Lipid Res 29: 1629–1636, 1988Google Scholar
  117. 117.
    Hiltunen JK, Karki T, Hassinen IE, Osmundsen H: b-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta oxidation. J Biol Chem 261: 16484–16493, 1986Google Scholar
  118. 118.
    Singh H, Usher S, Johnson D, Poulos A: A comparative study of straight chain and branched chain fatty acid oxidation in skin fibroblasts from patients with peroxisomal disorders. J Lipid Res 31: 217–225, 1990Google Scholar
  119. 119.
    Chang YF: Lysine metabolism in the rat brain: blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J Neurochem 30: 355–360, 1978Google Scholar
  120. 120.
    Vamecq J, Hoffman E, van Hoof F: Aberration in de novo ether lipid biosynthesis in peroxisomal disorders. Mitochondrial and peroxisomal metabolism of glutaryl-CoA. Eur J Biochem 146: 663–669, 1985Google Scholar
  121. 121.
    Hashimoto T: Comparison of enzymes of lipid b-oxidation in peroxisomes and mitochondria. In: HD Fahimi and H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, Heidelberg, 1987, 97–104Google Scholar
  122. 122.
    Vamecq J, Draye JP: Pathophysiology of peroxisomal beta-oxidation. Essays in Biochem 24: 115–223, 1989Google Scholar
  123. 123.
    Omundsen H, Bremer J, Pedersen JI: Metabolic aspects of peroxisomal b-oxidation. Biochim Biophys Acta 1085: 141–158, 1991Google Scholar
  124. 124.
    Schepers L, Van Veldhoven PP, Casteels M, Eyssen H, Mannaerts GP: Presence of three acyl-CoA oxidase in rat liver peroxisomes: An inducible fatty acid acyl-CoA oxidase, noninducible acyl-CoA oxidase and an noninducible trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 265: 5242–5248, 1990Google Scholar
  125. 125.
    Palosauri PM, Hiltunen JK: Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem 265: 2446–2449, 1990Google Scholar
  126. 126.
    Novikov DK, Vanhove GF, Carchon H, Asselberghs, S, Eyssen HJ, Van Veldhoven PP, Mannaerts GP: Peroxisomal b-oxida-tion: Purification of four novel 3-hydroxyacyl-CoA dehydro-genase from rat liver peroxisomes. J Biol Chem 269: 27125–27135, 1994Google Scholar
  127. 127.
    Hijikata M, Wen J-K, Osumi T, Hashimoto T: Rat peroxisomal 3-ketoacyl-CoA thiolase gene. Occurrence of two closely related but differentially regulated genes. J Biol Chem 265: 4600–4606, 1990Google Scholar
  128. 128.
    Bodnar AG, Rachubinski RA: Cloning and sequence determination of cDNA encoding a second rat liver peroxisomal 3-ketoacyl-CoA thiolase. Gene (Amst) 91: 193–199, 1990Google Scholar
  129. 129.
    Bout A, Franse MM, Collins J, Blonden L, Tager JM, Benne R: Characterization of the gene encoding human peroxisomal 3-oxoacyl-CoA thiolase (ACAA). No large DNA rearrangement in a thiolase-deficient patient. Biochim Biophys Acta 1090: 43–51, 1991Google Scholar
  130. 130.
    Singh I, Singh RP, Bhushan A, Singh AK: Lignoceroyl-CoA ligase activity in rat brain microsomal fraction: Topographical localization and effect of detergents and Alpha-cyclodextrin. Arch Biochem Biophys 236: 418–426, 1985Google Scholar
  131. 131.
    Singh H, Poulos A: Distinct long chain and very long chain fatty acyl-CoA synthetase in rat liver peroxisomes and microsomes. Arch Biochem Biophys 266: 486–495, 1988Google Scholar
  132. 132.
    Lazo O, Contreras M, Yoshida Y, Singh AK, Stanley W, Weise MJ, Singh I: Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases. J Lipid Res 31: 583–595, 1990Google Scholar
  133. 133.
    Li J, Smeland TE, Shulz H: D-3-hydroxyacyl coenzyme A dehydratase from rat liver peroxisomes. Purification and characterization of a novel enzyme necessary for the epimerization of 3-hydroxyacyl-CoA thioesters. J Biol Chem 265: 13629–13634, 1990Google Scholar
  134. 134.
    Hague TA, Christophersen BO: Evidence for peroxisomal retroconversion of adrenic acid (22:4(n-6)) and docosahexaenoic acids (22:6(n-3)) in isolated liver cells. Biochim Biophys Acta 875: 165–173, 1986Google Scholar
  135. 135.
    Hiltunen JK, Palosuari PM, Kunan WH: Epimerization of 3-hydroxyacyl-CoA esters in rat liver. Involvement of two 2-enoyl-CoA hydratases. J Biol Chem 264: 13536–13540, 1989Google Scholar
  136. 136.
    Smeland TE, Li JX, Chen CH, Cuebas D, Shulz H: The 3-hydroxyacyl-CoA epimerase activity of rat liver peroxisomes is due to the combined actions of two enoyl-CoA hydratases: A revision of the epimerase-dependent pathway of unsaturated fatty acid oxidation. Biochem Biophys Res Commun 160: 988–992, 1989Google Scholar
  137. 137.
    Hovik R, Omundsen H: Peroxisomal b-oxidation of long chain fatty acid processing different extent of unsaturation. Biochem J 247: 531–535, 1987Google Scholar
  138. 138.
    Christensen E, Hague TA, Christopherson BO: The Zellweger syndrome: Deficient chain shortening of erucic acid (22:l(n-9)) and adrenic acid (22:4(n-6)) in cultured skin fibroblasts. Biochim Biophys Acta 959: 134–142, 1988Google Scholar
  139. 139.
    Marcus AJ: The eicosanoids in biology and medicine. J Lipid Res 25: 1511–1516, 1984Google Scholar
  140. 140.
    Sala A, Voelkel N, Mclouf J, Murphy RC: Leukotriene E4 elimination and metabolism in normal human subjects. J Biol Chem 265: 21771–21778, 1990Google Scholar
  141. 141.
    Scherpers L, Casteele M, Vamecq J, Parmentier G, Van Veldhoven PP and Mannaerts GP: b-Oxidation of the carboxyl side chain of prostaglandin E 2 by rat liver peroxisomes. J Biol Chem 263: 2724–2731, 1988Google Scholar
  142. 142.
    Diczfalusy UIF, Alexson SEH, Pederson JI: Chain shortening of prostaglandin F2αby rat liver peroxisomes. Biochem Biophys Res Commun 144: 1206–1213, 1987Google Scholar
  143. 143.
    Diczfalusy UG, Alexson EH: Role of peroxisomes in the degradation of prostaglandins. Prog Clin Biol Res 375: 253–261, 1992Google Scholar
  144. 144.
    Pederson JI: Peroxisomal oxidation of steroid side chain in bile acid formation. Biochemie 75: 167–174, 1993Google Scholar
  145. 145.
    Kase BF, Prydz K, Bjorkhem I, Pederson JI: In vitro formation of bile acids from di-and trihydroxy-5 beta-cholestanoic acid in human liver peroxisomes. Biochim Biophys Acta 877: 37–42, 1986Google Scholar
  146. 146.
    Krisans SK, Thompson SL, Pena LA, Kok E, Javitt NB: Bile acid synthesis in rat liver peroxisomes: metabolism of 26-hydroxycholesterol to 3 beta-hydroxy-5-cholenoic acid. J Lipid Res 26: 1324–1332, 1985Google Scholar
  147. 147.
    Casteels M, Schepers L, van Eldere JR, Eyssen HJ, Mannaerts GP: Inhibition of 3 alpha, 7 alpha, 12 alpha-trlhydroxy-5 beta-cholestanoic acid oxidation and of bile acid secretion in rat liver by fatty acids. J Biol Chem 263: 4654–4661, 1988Google Scholar
  148. 148.
    Ostlund Farrants AK, Bjorkhem I, Pederson JI: Identification of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoic acid as an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5-beta-cholestanoic acid to cholic acid. Biochim Biophys Acta 1002 (2): 198–202, 1989Google Scholar
  149. 149.
    Russell DW, Setchell KDR: Bile acid synthesis. Biochem 31: 4737–4748, 1992Google Scholar
  150. 150.
    Poll-The BT, Roels F, Ogier H, Scotto J, Vamecq J, Schutgens RBH, Wanders RJA, Van Roermund CWT, Van Wijland MJA, Schram AW: A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo neonatal adrenoleukodystrophy). Am J Hum Genet 42: 422–434, 1988Google Scholar
  151. 151.
    Christensen E, van Eldere JR, Brandt NJ, Schutgens RB, Wanders RJA, Eyssen HJ: A new peroxisomal disorder: di-and trihydroxycholestanaemia due to a presumed trihydroxycho-lestanoyl-CoA oxidase deficiency. J Inher Metab Dis 13: 363–366, 1990Google Scholar
  152. 152.
    Clayton PT: Inborn Errors of Bile Acid Metabolism. J Inher Metab Dis 14: 478–496, 1991Google Scholar
  153. 153.
    Clayton PT, Patel E, Lawson AM, Curruthers RA: Bile acid profiles in peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. J Clin Invest 85: 1267–1273, 1990Google Scholar
  154. 154.
    Schram AW, Goldfischer S, Van Roermund CWT, Brouwer-Kelder EM, Collins J, Hashimoto T, Heymans HSA, Van den Bosch H, Schutgens RBH, Tager JM, Wanders RJA: Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci (USA) 84: 2493–2496, 1987Google Scholar
  155. 155.
    Kase BF, Bjorkhem I: Peroxisomal bile acid CoA: Amino acid N-acetyltransferase in rat liver. J Biol Chem 264: 9220–9223, 1989Google Scholar
  156. 156.
    Kase BF, Prydz K, Bjorkhem I, Pedersen JI: Conjugation of cholic acid with taurine and glycine by rat liver peroxisomes. Biochem Biophys Res Commun 138: 167–173, 1986Google Scholar
  157. 157.
    Miyazawa S, Hashimoto T, Yokoda S: Identity of long-chain acyl-Coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J Biochem 98: 723–733, 1985Google Scholar
  158. 158.
    Krisans SK, Mortensen RM, Lazarow PB: Acyl-CoA Synthetase in Rat Liver Peroxisomes. Computer-assisted analysis of cell fractionation experiments. J Biol Chem 255: 9599–9607, 1980Google Scholar
  159. 159.
    Hester CB, Olymbois C, Halder D: Transverse-plane topography of long chain acyl-CoA synthetase in the mitochondrial outer membrane. J Biol Chem 265: 6600–6605, 1990Google Scholar
  160. 160.
    West DW, Chase JFA, Tubbs PK: The separation and properties of two forms of carnitine palmitoyltransferase from ox liver mitochondria. Biochem Biophys Res Commun 42: 912–918, 1971Google Scholar
  161. 161.
    Mannaerts GP, van Veldhoven P, van Brockhoven A, van de Broek G, De Beer LJ: Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem J 204: 17–23, 1982Google Scholar
  162. 162.
    Lazo O, Contreras M, Singh I: Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases. Biochem 29: 3982–3986, 1990Google Scholar
  163. 163.
    Lageweg W, Tager JM, Wanders RJA: Topography of very-long-chain-fatty-acid-activating activity in peroxisomes from rat liver. Biochem J 276: 53–56, 1991Google Scholar
  164. 164.
    Wanders RJA, Van Roermund CWT, Schutgens RBH, Barth PG, Heymans HSA, Van Den Bosch H, Tager JM: The inborn errors of peroxisomal beta-oxidation: A review. J Inher Met Dis 13: 4–36, 1990Google Scholar
  165. 165.
    Singh I: Peroxisomal activation, transport and oxidation of fatty acids: Implications to peroxisomal disorders. In: P Coates and K Tanaka (eds). Proceedings of Second International Sym-posium on Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation. John Wiley & Sons, Inc, New York, 1992, pp 211–222Google Scholar
  166. 166.
    Singh I, Lazo O, Dhaunsi GS, Contreras M: Transport of fatty acids into human peroxisomes and rat peroxisomes: Differen-tial transport of palmitic and lignoceric acids and its implica-tions to X-adrenoleukodystrophy. J Biol Chem 267: 13306–13313, 1992Google Scholar
  167. 167.
    Yoshida Y, Singh I: Effect of Clofibrate on peroxisomal lignoceroyl-CoA ligase. Biochem Med Met Biol 43: 22–29, 1990Google Scholar
  168. 168.
    Lazo O, Contreras M, Singh I: Effect of ciprofibrate on the activation and oxidation of very long chain fatty acids. Mol Cell Biochem 100: 159–167, 1991Google Scholar
  169. 169.
    Lazo O, Contreras M, Bhushan W, Stanley W, Singh I: Adrenoleukodystrophy: impaired oxidation of fatty acids due to peroxisomal lignoceroyl-CoA ligase deficiency. Arch Biochem Biophys 270: 722–728, 1989Google Scholar
  170. 170.
    Steinberg D: Refsum disease. In: R Scriver, AL Beaudet, WS Sly and D Valle (eds). The Metabolic Basis of Inherited Disease. 6th ed. McGraw-Hill Book Co., New York, 1989, pp 1533–1550Google Scholar
  171. 171.
    Steinberg D, Avigan J, Mize CE, Baxter JH: Phytanic acid formation and accumulation in Phytol-fed rats. Biochem Biophys Res Commun 19: 412–416, 1965Google Scholar
  172. 172.
    Tsai S-C, Avigan J, Steinberg D: Studies on the a-oxidation of phytanic acid by rat liver mitochondria. J Biol Chem 244: 2682–2692, 1969Google Scholar
  173. 173.
    Muralidharan VB, Kishimoto Y. Phytanic acid a-oxidation in rat liver. Requirement of cytosolic factor. J Biol Chem 259: 13021–13026, 1984Google Scholar
  174. 174.
    Skjeldal OH, Stokke O: The subcellular localization of phytanic acid oxidase in rat liver. Biochim Biophys Acta 921: 3842, 1987Google Scholar
  175. 175.
    Skjeldal OH, Stokke O: Evidence against alpha-hydroxyphytanic acid as an intermediate in the metabolism of phytanic acid. Scand J Clin Lab Invest 48: 97–102, 1988Google Scholar
  176. 176.
    Watkins PA, Mihalik SJ: Mitochondrial oxidation of phytanic acid in human and monkey liver: Implication that Refsum's disease is not a peroxisomal disorder. Biochem Biophys Res Commun 167: 580–586, 1990Google Scholar
  177. 177.
    Wanders RJA, Van Roermund CWT, Jakobs C, Ten Brink HJ: Identification of pristanoyl CoA oxidase and phytanic acid de-carboxylation in peroxisomes and mitochondria from human liver: Implications for Zellweger syndrome. J Inher Metab Dis 14: 349–352, 1991Google Scholar
  178. 178.
    Huang S, Van Veldhoven PP, Vanhoutte CWT, Parmetier G, Eyssen HJ, Mannaerts GP: Alpha-oxidation of 3-methyl-substi-tuted fatty acids in rat liver. Arch Biochem Biophys 296: 214–223, 1992Google Scholar
  179. 179.
    Singh I, Lazo O, Pahan K, Singh AK: Phytanic acid a-oxidation in human cultured skin fibroblasts. Biochim Biophys Acta 1180: 221–224, 1992Google Scholar
  180. 180.
    Singh I, Pahan K, Dhaunsi GS, Lazo O, Ozand P: Phytanic acid α-oxidation. Differential subcellular localization in rat and human tissues and its inhibition by nycodenz. J Biol Chem 268: 9972–9979, 1993Google Scholar
  181. 181.
    Singh I, Pahan K, Singh AK, Barbosa E: Refsum disease: a defect in the α-oxidation of phytanic acid in peroxisomes. J Lipid Res 34: 1755–1764, 1993Google Scholar
  182. 182.
    Pahan K, Cofer J, Baliga P, Singh I. Identification of phytanoyl-CoA ligase as a distinct acyl-CoA ligase in peroxisomes from cultured skin fibroblasts. FEBS Lett 322: 101–104, 1993Google Scholar
  183. 183.
    Pahan K, Singh I: Intraorganellar localization of CoASH-inde pendent phytanic acid oxidation in human liver peroxisomes. FEBS Lett 333: 154–158, 1993Google Scholar
  184. 184.
    Pahan K, Singh I: Phytanic acid oxidation: Topographical localization of phytanoy-CoA ligase and transport of phytanic acid into human peroxisomes. J Lipid Res 36: 986–997, 1995Google Scholar
  185. 185.
    Poulos A, Sharp P, Fallenberg AJ, Johnson DW: Accumulation of pristanic acid in the plasma of patients with generalized peroxisomal dysfunction. Eur J Pediatr 147: 143–147, 1988Google Scholar
  186. 186.
    Pahan K, Gulati S, Singh I: Phytanic acid a-oxidation in rat liver mitochondria. Biochim Biophys Acta 1201: 491–497, 1994Google Scholar
  187. 187.
    Van de Bosch H, Schalkwijik CG, Schrakamp G, Wanders RJA, Schutgens RBH, Schram AW, Tager JM: Aberration in de novo ether lipid biosynthesis in peroxisomal disorders. Prog Clin Biol Res 282: 139–150, 1988Google Scholar
  188. 188.
    Snyder F, Lee T, Wykle RL: Ether-Linked glycerolipids and their bioactive species: Enzymes and metabolic regulation. In: AN Martinosi (ed). The enzymes of biological membranes, Vol. 2. Plenum Press, New York, 1985, pp 1–58Google Scholar
  189. 189.
    Hajra AK, Horie S, Weber KO: The role of peroxisomes in glycerol ether lipid metabolism. Prog Clin Biol Res 282: 99–116, 1988Google Scholar
  190. 190.
    Hajra AK, Burke CL, Jones CL: Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem 254: 10896–10900, 1979Google Scholar
  191. 191.
    Hardeman D, Van den Bosch H: Rat liver dihydroxyacetone-phosphate acyltransferase: enzyme characteristics and localization studies. Biochem Biophys Acta 963: 1–9, 1988Google Scholar
  192. 192.
    Hardeman D, Van den Bosch H: Localization of enzymes involved in glycero-ether bond formation in rat liver. Biochim Biophys Acta 1081: 285–292, 1991Google Scholar
  193. 193.
    Burdett K, Larkins LK, Das AK, Hajra AK: Peroxisomal localization of acyl-coenzyme A reductase (long chain alcohol forming) in guinea pig intestine mucosal cells. J Biol Chem 266: 12201–12206, 1991Google Scholar
  194. 194.
    Ghosh MK, Hajra AK: Subcellular distribution and properties of acyl/alkyl dihydroxyacetone phosphate reductase in rodent livers. Arch Biochem Biophys 245: 523–530, 1986Google Scholar
  195. 195.
    Schrakamp G, Schalkwijk CG, Schutgens RBH, Wanders RJA, Tager JM, Van den Bosch H: Plasmalogen biosynthesis in peroxisomal disorders: fatty alcohol versus alkylglycerol precur-sors. J Lipid Res 29: 325–334, 1988Google Scholar
  196. 196.
    Datta NS, Wilson GN, Hajra AK: Deficiency of enzymes catalyzing the biosynthesis of glycerol ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N Eng J Med 311: 1080–1083, 1984Google Scholar
  197. 197.
    Wilson GM, Homes RG, Custer J, Lipkowitz JL, Stover J, Datta NS, Hajra AK: Zellweger syndrome: diagnostic assays, syndrome delineation, and potential therapy. Am J Med Gen 24: 69–82, 1986Google Scholar
  198. 198.
    Zoeller RA, Morand OH, Raetz CR: A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 263: 11590–11596, 1988Google Scholar
  199. 199.
    Hoefler G, Paschke E, Hoefler S, Moser AB, Moser HW: Photosensitized killing of cultured fibroblasts from patients with peroxisomal disorders due to pyrene fatty acid-mediated ultra-violet damage. J Clin Invest 88: 1873, 1991Google Scholar
  200. 200.
    Morand OH: Reactivity of plasmalogens to singlet oxygen and radicals. Meth Enzymol 234: 603–620, 1994Google Scholar
  201. 201.
    Murand Rh, Zoeller RA, Raetz CRH: Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263: 11597–11606, 1988Google Scholar
  202. 202.
    Maulik N, Tosaki A, Engelman RM, Cordis GA, Das DK: Myo-.27 cardial salvage by 1-0 hexadecyl-Sn-glycerol: Possible role of peroxisomal dysfunction in ischemia-reperfusion injury. Cardiovasc Pharm 24: 686–692, 1994Google Scholar
  203. 203.
    Prescott SM, Zimmerman GA, McIntyre TM: Platelet activating factor. J Biol Chem 265: 17381–17384, 1990Google Scholar
  204. 204.
    Van den Bosch H, Schrakamp G, Hardeman D, Zomer AWM, Wanders RJA, Schutgens RBH: Ether lipid synthesis and its deficiency in peroxisomal disorders. Biochemie 75: 183–189, 1993Google Scholar
  205. 205.
    Ericsson J, Appelvist EL, Runquist M, Dallner G: Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochemie 75: 167–173, 1993Google Scholar
  206. 206.
    Grunler J, Ericsson J, Dallner G: Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212: 259–277, 1994Google Scholar
  207. 207.
    Krisans SK: The role of peroxisomes in cholesterol metabolism. Am J Resp Cell Mol Biol 7: 358–364, 1992Google Scholar
  208. 208.
    Tsuneoka M, Yamamoto A, Fujiki Y, Tashiro Y: Nonspecific lipid transfer protein (sterol carrier protein-2) is located in rat liver peroxisomes. J Biochem 104: 560–564, 1988Google Scholar
  209. 209.
    Keller GA, Barton MC, Shapiro DJ, Singer SJ: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc Natl Acad Sci 82: 770–774, 1985Google Scholar
  210. 210.
    Thompson SL, Krisans SK: Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoA. J Biol Chem 265: 5731–5735, 1990Google Scholar
  211. 211.
    Thompson SL, Burrows R, Laub RJ, Krisans SK: Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol. J Biol Chem 262: 17420–17425, 1987Google Scholar
  212. 212.
    Ericsson J, Scallen TJ, Chojnacki T, Dallner G: Involvement of sterol carrier protein-2 in dolichol biosynthesis. J Biol Chem 266: 10602–10607, 1991Google Scholar
  213. 213.
    Andersson M, Ericsson J, Appelkvist E-L, Scheldin S, Chojnaki T, Dallner G: Modulation of hepatic branch-point enzymes in-volved in isoprenoid biosynthesis upon dietary and drug treatment of rats. Biochim Biophys Acta 1214: 79–87, 1994Google Scholar
  214. 214.
    Gruler J, Olsson JM, Dallner G: Estimation of dolichol and cholesterol synthesis in microsomes and peroxisomes isolated from rat liver. FEBS Letts 358: 230–232, 1995Google Scholar
  215. 215.
    Scriver CR, Rosenberg LF: Lysine. In: Amino Acid Metabolism and its Disorders. Saunders, Philadelphia: 1973, 250–255Google Scholar
  216. 216.
    Nishio H, Ortiz J, Giacobini E: Accumulation and metabolism of pipecolic acid in the brain and other organs of the mouse. Neurochem Res 6: 1241–1252, 1981Google Scholar
  217. 217.
    Thomas GH, Harlam RHA, Batashaw ML, Capute AJ, Neidengard L, Ransom JL: Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin Genetics 8: 376–382, 1975Google Scholar
  218. 218.
    Kase Y, Takahama K, Hashimoto T, Kaisaku J, Okano J, Miyata T: Electrophoretic study of pipecolic acid, a biogenic imino acid, in the mammalian brain. Brain Res 193: 608–613, 1980Google Scholar
  219. 219.
    Mihalic SJ, Rhead WJ: L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem 264: 2509–2517, 1989Google Scholar
  220. 220.
    Kramar R, Kremser K, Schon H: Peroxisomal oxidation of pipecolic acid in the rat. J Clin Chem Clin Biochem 27: 319–321, 1989Google Scholar
  221. 221.
    Lazo O, Singh AK, Singh I: Postnatal development and isolation of peroxisomes from brain. J Neurochem 56: 1343–1353, 1991Google Scholar
  222. 222.
    Kremser K, Schon HJ, Lohninger A, Prager CM, Kramar R, Bock P: Response to thyroxine of lamellar bodies, peroxisomes and peroxisomal enzymes in the adult rat lung. Eur J Clin Chem and Clin Biochem 29: 151–158, 1991Google Scholar
  223. 223.
    Burton BK, Reed SP, Remy WT: Hyperpipecolic acidemia: Clinical and biochemical observations in two male siblings. J Pediatr 99: 729–734, 1987Google Scholar
  224. 224.
    Yanagawa M, Maeda-Nakai E, Yamakawa K, Yamamoto I, Kawamura J, Tada S, Ichiyama A: The formation of oxalate from glycolate in rat and human liver. Biochim Biophys Acta 1036: 24–32, 1990Google Scholar
  225. 225.
    Noguchi T, Okunu S, Takada Y, Minatogawa Y, Okai K, Kido R: Characteristics of hepatic alamine: Glyoxylate aminotransferase in different mammalian species. Biochem J 169: 113–122, 1978Google Scholar
  226. 226.
    Noguchi T, Fujiwara S: Identification of mammalian aminotrans-ferase utilizing glyoxylate or pyruvate as amino receptor. J Biol Chem 263: 182–186, 1988Google Scholar
  227. 227.
    Naguchi T: Amino acid metabolism in animal peroxisomes. In: HD Fahimi, H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, Heidelberg, 1987, 234–243Google Scholar
  228. 228.
    Williams HE, Smith LH: Primary Hyperoxaluria. In: JB Stanbury, JB Wyngaarden, D Frederickson, JL Goldstein, MS Brown (eds). Molecular Basis of Inherited Diseases. McGraw-Hill, New York, 1983, 204–208Google Scholar
  229. 229.
    Naguchi T, Takada Y: Peroxisomal localization of alanine-glyoxylate aminotransferase in human liver. Arch Biochem Biophys 196: 645–647, 1979Google Scholar
  230. 230.
    Danpure CJ, Jennings PR: Peroxisomal alanine: glyoxylate ami-notransferase deficiency in primary hyperoxaluria type I. FEBS Lett 201: 20–24, 1986Google Scholar
  231. 231.
    Purdue PE, Lund MJ and Danpure CJ: Molecular evolution of alanine/glyoxylate aminotransferase intracellular targeting analysis of the marmoset and rabbit genes. Eur J Biochem 207: 757–766, 1992Google Scholar
  232. 232.
    Danpure CJ: Primary hyperoxaluria type 1 and peroxisome-to-mitochondria mistargeting of alanine: glyoxylate aminotrans-ferase. Biochemie 75: 309–315, 1993Google Scholar
  233. 233.
    Oda T, Funai T, Ichiyama A: Generation from a single gene of two mRNAs that encode the mitochondrial and peroxisomal serine: Pyruvate aminotransferase of rat liver. J Biol Chem 265: 7513–7519, 1990Google Scholar
  234. 234.
    Danpure CJ, Cooper PJ, Wise PJ, Jennings PR: An enzyme trafficking defect in two patients with primary hyperoxaluria Type 1: Peroxisomal alanine/glyoxylate amino transferase re-routed to mitochondria. J Cell Biol 108: 1345–1352, 1989Google Scholar
  235. 235.
    Purdue PE, Takada Y, Danpure CJ: Identification of mutations associated with peroxisome to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria. J Cell Biol 111: 2341–2351, 1990Google Scholar
  236. 236.
    Floyd, RA: Measurement of oxidative stress in vivo. In: KJA Davies and W Fulvio (eds). The Oxygen Paradox. Cleup University Press, Italy, 1995, pp 89–104Google Scholar
  237. 237.
    Zwacka RM, Reuier A, Plaff E, Moll J, Gorges K, Karasawa M, Weiher H: The glumerulosclerosis gene MPV17 encodes a peroxisomal protein producing reactive oxygen species. EMBO J 13: 5129–5134, 1994Google Scholar
  238. 238.
    Del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ: Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Rad Biol Med 13: 557–580, 1992Google Scholar
  239. 239.
    Gutierrez C, Okita R, Krisans S: Demonstration of cytochrome reductases in rat liver peroxisomes: Biochemical and immunochemical analysis. J Lipid Res 29: 613–628, 1988Google Scholar
  240. 240.
    Pahan K, Khan M, Smith B, Singh I: Ketoconazole and other imidazole derivatives as potent inhibitors of peroxisomal phytanic acid alpha oxidation. FEBS Letts 377: 213–216, 1995.28Google Scholar
  241. 241.
    Keller G, Warner TG, Steimer KS, Halewell RA: Cu-Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci (USA) 88: 7381–7385, 1991Google Scholar
  242. 242.
    Wanders RJA, Denis S: Identification of superoxide dismutase in rat liver peroxisomes. Biochim Biophys Acta 1115: 259–262, 1992Google Scholar
  243. 243.
    Dhaunsi GS, Gulati S, Singh AK, Orak JK, Asayama K, Singh I: Demonstration of CuZn superoxide dismutase in rat liver peroxisomes: Biochemical and immunochemical evidence. J Biol Chem 267: 870–6873, 1992Google Scholar
  244. 244.
    Crapo JD, Oury T, Rabouille C, Slot JN, Chang Y-N: Copper, Zinc Superoxide Dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci (USA) 89: 10405–10409, 1992Google Scholar
  245. 245.
    Singh I, Dhaunsi GS, Orak JK, Singh AK: CuZn superoxide dismutase: Intraorganellar distribution in peroxisomes. Annals New York Acad Sci 723: 406–408, 1994Google Scholar
  246. 246.
    Singh AK, Dhaunsi GS, Singh I, Asayama K, Orak J: Localization of Mn-containing superoxide dismutase in peroxisomes. Submitted 1995Google Scholar
  247. 247.
    Singh AK, Dhaunsi GS, Asayama K, Orak JK, Singh I: Demonstration of glutathione peroxidase in rat liver peroxisomes and its intraorganellar distribution. Arch Biochem Biophys 315: 331–338, 1994Google Scholar
  248. 248.
    Messing Eriksson A, Zeltergvist MA, Lundgren P, Andersson K, Beije B, DePierre JW: Studies on the intracellular distributions of soluble epoxide hydrolase and of catalase by digitoninpermealization of hepatocytes isolated from control and ciprofibrate treated mice. Eur J Biochem 198: 471–476, 1991Google Scholar
  249. 249.
    Pahan K, Smith B, Singh I: Epoxide hydrolase in human and rat peroxisomes: Implications to disorders of peroxisomal biogenesis. J Lipid Res 37: 159–167, 1996Google Scholar
  250. 250.
    Reilly PM, Schiller HJ and Buckley JB: Pharmacological approach to tissue injury mediated by free radicals and other reac-tive oxygen metabolites. Am J Surg 161: 488–503, 1991Google Scholar
  251. 251.
    Gulati S, Singh AK, Irazu C, Orak JK, Rajagopalan PR, Fitts CT, Singh I: Ischemia-reperision injury: Biochemical alterations in peroxisomes of rat kidney. Arch Biochim Biophys 295: 90–100, 1992Google Scholar
  252. 252.
    Gulati S, Ainol L, Orak JK, Singh AK, Singh I: Alterations of peroxisomal functions in ischemia-reperfusion injury of rat kidney. Biochim Biophys Acta 1182: 291–298, 1993Google Scholar
  253. 253.
    Kremser K, Kremser-Jezik M, Singh I: Effect of hypoxia-reoxygenation on peroxisomal functions in cultured human skin fibroblasts from control and Zellweger Syndrome patients. Free Rad Res 22: 39–46, 1994Google Scholar
  254. 254.
    Baker CW, Fagan JB, Pasco DS: Down-regulation of P4501A1 and P4501A2 rnRNA expression in isolated hepatocytes by oxidative stress. J Biol Chem 269: 3985–3990, 1994Google Scholar
  255. 255.
    Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisnieski HK, Ritch RH, Norton WT, Rapin I, Gartner LM: Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182: 62–64, 1973Google Scholar
  256. 256.
    Arias JA, Moser AB, Goldfischer S: Ultrastructural and cyto-chemical demonstration of peroxisomes in cultured fibroblasts from patients with peroxisomal deficiency disorders. J Cell Biol 100: 1789–1792, 1985Google Scholar
  257. 257.
    Hughes JL, Poulos A, Robertson E, Chow CW, Sheffield LJ, Chistodoulou, Carter RF: Pathology of hepatic peroxisomes and mitochondria in patients with peroxisomal disorders. Virchows Archiv Pathol Anat and Histopath 416: 255–264, 1990Google Scholar
  258. 258.
    Roel F, Cornelis A, Poll-The BT, Aubourg P, Ogier H, Scotto J, Saudubray JM: Hepatic peroxisomes are deficient in infantile Refsum disease: A cytochemical study of 4 cases. Am J Hum Genet 25: 257–271, 1986Google Scholar
  259. 259.
    Roscher AA, Hoefler S, Hoefler G, Pasekke E, Paltauf F, Moser AE, Moser HW: Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis-a complementation study in-volving cell lines from 19 patients. Pediatr Res 26: 67–72, 1989Google Scholar
  260. 260.
    Santos MJ, Imanaka T, Shio H, Lazarow PB: Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J Biol Chem 263: 10502–10509, 1988Google Scholar
  261. 261.
    Bowen P, Lee CNS, Zellweger H: A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp 114: 402–414, 1964Google Scholar
  262. 262.
    Moser AE, Singh I, Brown FR, Solish G, Kelley RI, Benke P, Moser HW: The cerebro-hepato-renal (Zellweger) syndrome. Increased levels and impaired degradation of very long chain fatty acids and their use in prenatal diagnosis. New Eng J Med 310: 1141–1146, 1984Google Scholar
  263. 263.
    Heymans HSA, Schutgens RBH, Tan R, Van den Bosch H, Borst P: Severe plasmalogen deficiency in tissues or infants without peroxisomes (Zellweger syndrome). Nature 308: 69–70, 1983Google Scholar
  264. 264.
    Hanson RF, Szczepanik-Van LP, William GC, Grabowski G, Sharp H: Defects of bile acid synthesis in Zellweger's syndrome. Science 203: 1107–1108, 1979Google Scholar
  265. 265.
    Poll-The BT, Ogier H, Sandubray JM, Schutgens RBH, Wanders RJA, Schrakamp G, Van den Bosch H, Trybels JMF, Poulos A et al.: Infantile Refsum's disease: Biochemical findings suggesting multiple peroxisomal dysfunction. J Inherit Metab Dis 9: 169–174, 1986Google Scholar
  266. 266.
    Schram A, Strijland A, Hashimoto T, Wanders RJA, Schutgens RBH, Van den Bosch, Tager JM: Biosynthesis and maturation of peroxisomal beta-oxidation enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease. Proc Natl Acad Sci (USA) 83: 6156–6158, 1986Google Scholar
  267. 267.
    Gartner J, Moser H, Valle D: Mutations in the 70 K peroxisomal membrane protein in Zellweger Syndrome. Nature Genetics 1: 16–23, 1992Google Scholar
  268. 268.
    Shimozawa N, Tsukamoto T, Suzuki Y et al.: A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255: 1132–1134, 1992Google Scholar
  269. 269.
    Moser HW, Moser AB: Adrenoleukodystrophy (X-linked). In: CR Scriver, AL Beaudet, WS Sly and D Valle (eds). The Molecular Basis of Inherited Diseases. 7th Ed. Wiley Liss, New York, 1991, pp 177–191Google Scholar
  270. 270.
    Moser, HW: Advances in Human Genetics, Volume 21, H Harris and K Hirschhorn (eds). Plenum Press, New York, 1993Google Scholar
  271. 271.
    Igarashi M, Schamburg HH, Powers J, Kishimoto Y, Kolodny E, Suzuki K: Fatty acid abnormality in adrenoleukodystrophy. J Neurochem 26: 851–850, 1976Google Scholar
  272. 272.
    Kawamura N, Moser AB, Moser HW, Ogino T, Suzuki K, Shaumburg H, Milunsky A, Murphy J, Kishimoto Y: High concentration of hexacosanoate in cultured skin fibroblast lipids from adrenoleukodystrophy patients. Biochem Biophys Res Commun 82: 114–120, 1978Google Scholar
  273. 273.
    Singh I, Moser HW, Moser AE, Kishimoto Y: Adrenoleuko-dystrophy: Impaired oxidation of long chain fatty acids in cultured skin fibroblasts an adrenal cortex. Biochem Biophys Res Commun 102: 1223–1229, 1981Google Scholar
  274. 274.
    Singh I, Moser HW, Moser AE, Kishimoto Y: Adrenoleuko-dystrophy: Impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res 18: 286–289, 1984.29Google Scholar
  275. 275.
    Hashmi M, Stanley W, Singh I: Lignoceroyl-CoASH ligase: enzyme defect in fatty acid beta-oxidation system in X-linked child-hood adrenoleukodystrophy. FEBS Letts 196: 247–250, 1986Google Scholar
  276. 276.
    Lazo O, Contreras M, Hashmi M, Stanley W, Irazu C, Singh I: Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Proc Natl Acad Sci 85: 7647–7651, 1988Google Scholar
  277. 277.
    Wanders RJA, Van Roermunds CWT, Van Wijland MJA, Schutgens RBH, Van den Bosch H, Schram AW, Tager JM: Direct demon-stration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem Biophys Res Commun 153: 6618–6624, 1988Google Scholar
  278. 278.
    Tsuji S, Sano Kawamura T, Ariga T, Miyatake T: Metabolism of [17,18-3H2]hexacosanoic acid and from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). J Neurol Sci 71: 359–367, 1985Google Scholar
  279. 279.
    Mosser J, Douar AM, Sarde CO et al.: Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361: 726–730, 1993Google Scholar
  280. 280.
    Contreras M, Mosser J, Mandel JL, Aubourg P, Singh I: Protein coded by the X-ALD gene is a peroxisomal integral membrane protein. FEBS Letts 344: 211–215, 1994Google Scholar
  281. 281.
    Higgins CF: ABC transporters: From microorganisms to man. Annu Rev Cell Biol 8: 67–113, 1992Google Scholar
  282. 282.
    Ligtenberg MJL, Kemp S, Sarde CO et al.: Spectrum of mutations in the gene encoding the adrenoleukodystrophy protein. Am J Hum Genet 56: 44–50, 1995Google Scholar
  283. 283.
    Braum A, Ambach H, Kammerer S et al.: Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes. Am J Hum Genet 56: 854–861, 1995Google Scholar
  284. 284.
    Berger J, Molzer B, Fae I, Bernheimer H: X-linked adreno-leukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem Biophys Res Commun 205: 1638–1643, 1994Google Scholar
  285. 285.
    Cartier N, Lopez J, Moullier P et al.: Retroviral-mediated gene transfer corrects very long chain fatty acid metabolism in adrenoleukodystrophy fibroblasts. Proc Natl Acad Sci (USA) 92: 1674–1678, 1995Google Scholar
  286. 286.
    Shinnoh N, Yamada T, Yoshimura T et al.: Adrenoleuko-dystrophy: The restoration of peroxisomal b-oxidation by transfection of normal cDNA. Biochim Biophys Res Commun 210: 830–836, 1995Google Scholar
  287. 287.
    Singh I, Lazo O, Dhaunsi GS, Contreras M: Transport of fatty acids into human and rat peroxisomes: Differential transport of palmitic and lignoceric acids and its implication to X-adrenoleukodystrophy. J Biol Chem 267: 13306–13313, 1992Google Scholar
  288. 288.
    Contreras M, Sengupta T, Seikh F, Aubourg P, Singh I: Topology of ATP-binding domains of ALD-P in peroxisomal membranes. Arch Biochem Biophys. In pressGoogle Scholar
  289. 289.
    Fournier B, Saudubray J-M, Benichou B et al.: Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J Clin Invest 94: 526–531, 1994Google Scholar
  290. 290.
    Watkins PA, Chen WW, Harris CJ, Hoefler G, Hoefler S, Blake DC Jr, Daniel C, Balfe A, Kelley R, Moser AB, Beard ME, Moser HW: Peroxisomal bifunctional enzyme deficiency. J Clin Invest 83: 771–777, 1988Google Scholar
  291. 291.
    Goldfischer S, Collins J, Rapin I et al.: Pseudo-Zellweger syndrome: Deficiencies in several peroxisomal oxidative activities. J Pediatr 108: 25–32, 1986Google Scholar
  292. 292.
    Refsum S: Heredopathia Atactica Polyneuritoformis. Acta Psychiatr Scan (Suppl) 38: 9, 1946Google Scholar
  293. 293.
    Herndon JA Jr, Steinberg D, Uhlendorf W, Fales HM: Refsum's Disease: Characterization of the enzyme defect in cell culture. J Clin Invest 48: 1017–1032, 1969Google Scholar
  294. 294.
    Ten Brink HJ, Stellaard F, Van den Heuvel CMM et al.: Pristanic acid and phytanic acid in plasma from patients with peroxisomal disorders: stable isotope dilution analysis with electron cature negative ion fragmentation. J Lipid Res 33: 41–47, 1992Google Scholar
  295. 295.
    Poulos A, Sharp P, Singh I, Johnson DW, Corey WF, Easton C: Formic acid is a product of the a-oxidation of fatty acids by human skin fibroblasts: Deficiency of formic acid production in peroxisome-deficient fibroblasts. Biochem J 292: 457–461, 1993Google Scholar
  296. 296.
    Pahan K, Khan M and Singh I: Phytanic acid oxidation: Normal activation and transport yet defective a-hydroxylation of phytanic acid in peroxisomes from Refsum disease and Rhizomelic Chondrodysplasia Punctata. J Lipid Res 37: 1137–1143, 1996Google Scholar
  297. 297.
    Eaton JW: Acatalasemia. In: CR Scriver, AL Beaudet, WS Sly, D Valle. (eds). The Metabolic Basis of Inherited Disease. McGraw Hill Information Service Co., New York, 2: 1989, pp 1551–1561Google Scholar
  298. 298.
    Quan F, Korneluk R, Tropak M et al.: Isolation and characterization of the human catalase gene. Nucleic Acids Res 14: 5321–5345, 1986Google Scholar
  299. 299.
    Bennett MJ, Pollitt RJ, Hale DE, Goodman SI, Hale DE, Vamecq J: Atypical riboflavin-responsive glutaric aciduria, and deficient peroxisomal glutaryl-CoA oxidase activity: a new peroxisomal disorder. J Inher Metab Dis 14: 165–173, 1991Google Scholar
  300. 300.
    Vamecq J: Flourometric assay for peroxisomal diseases. Analyt Biochem 186: 163–180, 1990Google Scholar
  301. 301.
    Christenden E, Van Eldere J and Brandt NJ et al.: A new peroxisomal disorder: di and trihydroxycholestanemia due to a presumed trihydroxyxholestanoyl-CoA oxidase deficiency. J Inher Metab Dis 13: 363–366, 1990Google Scholar
  302. 302.
    Przyrembel H, Wanders RJA, Van Roermund CWT et al.: Di and tri-hydroxycholestanoic acidemia with hepatic failure. J Inher Metab Dis 13: 367–370, 1990Google Scholar
  303. 303.
    Clayton PT, Eckhardt S, Wilson J, Hall CM, Yousuf Y, Wanders RJA: Isolated dihydroxyacetone phosphate acyltransferase deficiency presenting with developmental delay. J Inher Metab Dis 17: 553–540, 1994Google Scholar
  304. 304.
    Mandel H, Berant M, Aizin A et al.: Zellweger-like phenotype in two siblings: A defect in peroxisomal beta-oxidation with elevated very long chain fatty acids but normal bile acids. J Inher Metab Dis 15: 381–384, 1992Google Scholar
  305. 305.
    Suzuki Y, Shimozawa N, Orii T, Igarashi N, Kono N, Hashimoto T: Molecular analysis of peroxisomal beta-oxidation enzymes in infants with Zellweger syndrome and Zellweger-like syndrome: further heterogeneity of the peroxisomal disorder. Clin Chimica Acta 172: 65–76, 1988Google Scholar
  306. 306.
    Aubourg P, Kremser K, Roland MO, Hadchonel M, Singh I: Pseudo infantile Refsum Disease: Catalase deficient peroxisomes with partial deficiency of plasmalogen system and oxidation of fatty acids. Pediatr Res 34: 270–276, 1993Google Scholar
  307. 307.
    Burdette DE, Kremser K, Pahan K, Singh I: Late onset generalized disorder of peroxisomes. Annals Neurol 46: 829–831, 1996Google Scholar
  308. 308.
    Singh I, Voight R, Natowicz M, Brown FR: Normal bile acids in patient with Zellweger-like clinical and biochemical features: A new peroxisomal disease. Pediatr Res 37: 901A, 1995Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Inderjit Singh
    • 1
  1. 1.Department of Pediatrics, Anatomy and Cell BiologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations