Advertisement

Molecular and Cellular Biochemistry

, Volume 174, Issue 1–2, pp 71–78 | Cite as

High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders

  • Wolfgang Sperl
  • Daniela Skladal
  • Erich Gnaiger
  • Markus Wyss
  • Udo Mayr
  • Josef Hager
  • Frank Norbert Gellerich
Article

Abstract

High resolution respirometry in combination with the skinned fiber technique offers the possibility to study mitochondrial function routinely in small amounts of human muscle. During a period of 2 years, we investigated mitochondrial function in skeletal muscle tissue of 13 patients (average age = 5.8 years). In all of them, an open muscle biopsy was performed for diagnosis of their neuromuscular disorder. Mitochondrial oxidation rates were measured with a highly sensitive respirometer. Multiple substrate-inhibitor titration was applied for investigation of mitochondrial function. About 50 mg fibers were sufficient to obtain maximal respiratory rates for seven different substrates (pyruvate/malate, glutamate/malate, octanoylcarnitine/malate, palmitoylcarnitine /malate, succinate, durochinol and ascorbate/TMPD). Decreased respiration rates with reference to the wet weight of the permeabilized fiber could immediately be detected during the course of measurements.

In 4 patients with mitochondrial encephalomyopathy (MEM) the respiration pattern indicated a specific mitochondrial enzyme defect, which was confirmed in every patient by measurements of the individual enzymes (one patient with PDHC deficiency, one with complex I deficiency and two patients with combined complex I and IV deficiency). In the 6 patients with spinal muscular atrophy (SMA) oxidation rates were found to be decreased to 23 ± 5% of controls. The normalized respiration pattern was comparable to that of the controls indicating a decreased content of mitochondria in SMA muscle with normal functional properties. Also in the 3 patients with Duchenne muscular dystrophy (DMD) decreased oxidation rates (42 ± 5%) were detected. In addition a low RCI (1.2) indicated a loose coupling of oxidative phosphorylation in the mitochondria of these patients.

It is concluded that investigation of mitochondrial function in saponin skinned muscle fibers using high resolution respirometry in combination with multiple substrate titration offers a valuable tool for evaluation of mitochondrial alterations in muscle biopsies of children suffering from neuromuscular disorders. (Mol Cell Biochem 174: 71–78, 1997)

skinned muscle fibers respirometry mitochondrial encephalomyopathy spinal muscular atrophy muscular dystrophy Duchenne 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luft R: The development of mitochondrial medicine. Biochim Biophys Acta 1271: 1–6, 1995Google Scholar
  2. 2.
    Munnich A, Rötig A, Chretien D, Cormier V, Bourgeron T, Bonnefont JP, Saudubray JM, Rustin P: Clinical presentation of mitochondrial disorders in childhood. J Inher Metab Dis 19: 521–527, 1996Google Scholar
  3. 3.
    Scholte HR, Yihong Yu, Ross JD, Oosterkamp II, Boonman AMC, Busch HFM: Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds. Mol Cell Biochem 1997. Accepted for publicationGoogle Scholar
  4. 4.
    Rasmussen HN, Rasmussen UF: Small scale preparation of skeletal muscle mitochondria, criteria of integrity, and assays with reference to tissue function. Mol Cell Biochem 1997. Accepted for publicationGoogle Scholar
  5. 5.
    Rustin P, Chretien D, Gérard B, Bourgeron T, Rötig A, Saudubray JM, Munnich A: Biochemical and molecular investigation of respiratory chain deficiencies. Clin Chim Acta 228: 35–51, 1994Google Scholar
  6. 6.
    Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA: Mitochondrial respiratory parameters in cardiac tissue: novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892: 191–196, 1987Google Scholar
  7. 7.
    Gellerich FN, Skladal D, Schranzhofer R, Lanznaster N, Kunz WS, Wisniewski E, Kuznetsov A, K rismer M, Gnaiger E, Margreiter R, Sperl W: Hochauflösende Respirometrie und multiple Substrat/Inhibitor-Titration zum funktionellen Nachweis mitochondrialer Defekte in permeabilisierten Muskelfasern. In: M Gross and U Gresser (eds). Molekulare Grundlagen hereditärer Myopathien. W. Zuckschwerdt Verlag, München, Bern, Wien, New York, 1995, pp 52–66Google Scholar
  8. 8.
    Kunz WS, Kuznetsov AV, Schulze W, Eichhorn K, Schild L, Striggow F, Bohnensack R, Neuhof S, Grasshoff H, Neumann HW, Gellerich FN: Functional characterization of mitochondrial oxidative phosphorylation in saponine-skinned human muscle fibers. Biochim Biophys Acta 144: 46–53, 1993Google Scholar
  9. 9.
    Letellier T, Malgat M, Coquet M, Moretto B, Parrot-Roulaud F, Mazat JP: Mitochondrial myopathy studies on permeabilized muscle fibers. Pediatr Res 32: 17–22, 1992Google Scholar
  10. 10.
    Skladal D, Sperl W, Schranzhofer R, Krismer M, Gnaiger E, Margreiter R, Gellerich FN: Preservation of mitochondrial functions in human skeletal muscle during storage in high energy preservation solution (HEPS). In: E. Gnaiger (ed). What is Controlling Life? Modern Trends in BioThermoKinetics 3. University Press, Innsbruck 1994 pp 268– 271Google Scholar
  11. 11.
    Bakeeva LE, Chentsov YS, Jasaitis AA, Skulachev VP: The effect of oncotic pressure on heart muscle mitochondria. Biochim Biophys Acta 275: 319–332, 1972Google Scholar
  12. 12.
    Kraft A, von Wersebe O, Neudecker S, Hein W, Haunschild M, Skladal D, Sperl W, Gnaiger E, Margreiter M, Zierz S, Gellerich FN: Long term stability of mitochondrial function in human skeletal muscle fibers during cold storage. J Mol Med 73: B29–B60, 1995Google Scholar
  13. 13.
    Kunz WS, Kuznetsov AV, Gellerich FN: Mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers is stimulated by caffeine. FEBS Lett 323: 188–190, 1993Google Scholar
  14. 14.
    Haller T, Ortner M, Gnaiger E: A respirometer for investigating oxidative cell metabolism: toward optimization of respiratory studies. Anal Biochem 218: 338–342, 1994Google Scholar
  15. 15.
    Sperl W, Skladal D, Lanznaster N, Schranzhofer R, Zaunschirm G, Gnaiger E, Gellerich F: Polarographic studies of saponin-skinned muscle fibres in patients with mitochondrial myopathies. J Inher Metab Dis 17: 307–310, 1994Google Scholar
  16. 16.
    Fischer JC, Ruitenbeek W, Stadhouders AM, Trijbels JMF, Sengers RCA, Janssen AJM, Veerkamp JH: Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta 145: 89–100, 1985Google Scholar
  17. 17.
    Fischer JC, Ruitenbeek W, Gabreels FJM, Janssen AJM, Renier WO, Sengers RCA, Stadhouders AM, Ter Laak HJ, Trijbels JMF, Veerkamp JH: A mitochondrial encephalomyelopathy: the first case with an established defect at the level of coenzyme Q. Eur J Pediatr 144: 441–444, 1986Google Scholar
  18. 18.
    Cooperstein SJ, Lazarow AS: A microspectrophotometric method for the determination of cytochrome c oxidase. J Biol Chem 189: 665– 670, 1951Google Scholar
  19. 19.
    Srere PA: Citrate synthase, EC 4.1.3.7., citrate oxaloacetate-lyase (CoA-acetylating). In: JM Löwenstein (ed). Methods in Enzymology, Vol XIII. Academic Press, London, 1969, pp 3—11Google Scholar
  20. 20.
    Sperl W, Trijbels JMF, Ruitenbeek W, van Laak HLJM, Janssen AJM, Kerkhof CMC, Sengers RCA: Measurements of totally activated pyruvate dehydrogenase complex activity in human muscle: evaluation of a useful assay. Enz Prot 47: 37–46, 1993Google Scholar
  21. 21.
    Lowry OH, Rosebrough NJ, Farr L, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951Google Scholar
  22. 22.
    Huizing M, De Pinto V, Ruitenbeek W, Trijbels FJM, Van den Heuvel LP, Wendel U. Importance of mitochondrial transmembrane processes in human mitochondriopathies. J Bioenerg Biomem 28: 109–114, 1996Google Scholar
  23. 23.
    Hausmanowa-Petrusewicz I, Fidzianska A, Niebroj-Dobosz I, Strugalska MH: Is Kugelberg-Welander spinal muscular atrophy a fetal defect? Muscle Nerve 3: 389–402, 1980Google Scholar
  24. 24.
    Harpey J-P, Charpentier C, Paturneau-Jouas M, Renault F, Romero N, Fardeau M: Secondary metabolic defects in spinal muscular atrophy type II. Lancet 336: 629–630, 1990Google Scholar
  25. 25.
    Tein I, Sloane A, Donner EJ, Lehotay DC, Millington DS, Kelley RI: Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defects? Pediatr Neurol 12: 21–30, 1995Google Scholar
  26. 26.
    Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, Salih M, Aubry H, Tamai K, Guan X, Ioannou, Crawford TO, De Jong PJ, Surh L, Ikeda JE, Korneluk RG, MacKenzie A: The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178, 1995Google Scholar
  27. 27.
    Poulton J, Sewry C, Potter CG, Bougeron T, Chretien D, Wijburg FA, Morten KJ, Brown G: Variation in mitochondrial DNA levels in muscle from normal controls. Is depletion of mtDNA in patients with mitochondrial myopathy a distinct clinical syndrome? J Inher Metab Dis 18: 4–20, 1995Google Scholar
  28. 28.
    Scholte HR, Rodrigues Pereira R, Busch HFM, Jennekens FGI, Luyt-Howen IEM, Vaandrager-Verduin MHM: Carnitine deficiency, mitochondrial dysfunction and the heart. Identical defect of oxidative phosphorylation in muscle mitochondria in cardiomyopathy due to carnitine loss and in Duchenne muscular dystrophy. Wien Klin Wo 101: 12–17, 1989Google Scholar
  29. 29.
    Müller-Höcker J, Pongratz D, Hübner G: Activation of mitochondrial ATPase as evidence of loosely coupled oxidative phosphorylation in various skeletal muscle disorders. A histochemical fine-structural study. J Neurol Sci 74: 199–213, 1986Google Scholar
  30. 30.
    Wrogemann K, Pena SDJ: Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet i: 672–674, 1976Google Scholar
  31. 31.
    Lestienne P, Bataillé N, Lucas-Héron B: Role of the mitochondrial DNA and calmitine in myopathies. Biochim Biophys Acta 1271: 159– 163, 1995Google Scholar
  32. 32.
    Tracey J, Scott RB, Thompson CH, Dunn JF, Barnes PRJ, Styles P, Kemp GJ, Rae CD, Pike M, Radda GK: Brain abnormalities in Duchenne muscular dystrophy: phosphorus-31 magnetic resonance spectroscopy and neuropsychological study. Lancet 345: 1260–1264, 1995Google Scholar
  33. 33.
    Gannoun-Zaki L, Fournier-Bidoz S, Le Cam G, Chambon C, Millasseau Ph, Léger JJ, Dechesne CA: Down-regulation of mitochondrial mRNAs in the mdx mouse model for Duchenne muscular dystrophy. FEBS Letters 375: 268–272, 1995Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Wolfgang Sperl
    • 1
  • Daniela Skladal
    • 1
  • Erich Gnaiger
    • 2
  • Markus Wyss
    • 2
  • Udo Mayr
    • 3
  • Josef Hager
    • 4
  • Frank Norbert Gellerich
    • 5
  1. 1.Department of PediatricsUniversity of InnsbruckAustria
  2. 2.Department of Transplantation SurgeryUniversity of InnsbruckAustria
  3. 3.Department of NeurologyUniversity of InnsbruckAustria
  4. 4.Department of Pediatric SurgeryUniversity of InnsbruckAustria
  5. 5.Muskellabor der Neurologischen KlinikMartin-Luther-UniversitätHalle-WittenbergGermany

Personalised recommendations