Molecular and Cellular Biochemistry

, Volume 182, Issue 1–2, pp 153–160 | Cite as

Insulin action in skeletal muscle from patients with NIDDM

  • Juleen R. Zierath
  • Anna Krook
  • Harriet Wallberg-Henriksson


Insulin resistance in peripheral tissues is a common feature of non insulin-dependent diabetes mellitus (NIDDM). The decrease in insulin-mediated peripheral glucose uptake in NIDDM patients can be localized to defects in insulin action on glucose transport in skeletal muscle. Following short term in vitro exposure to both submaximal and maximal concentrations of insulin, 3-O-methylglucose transport rates are 40-50% lower in isolated skeletal muscle strips from NIDDM patients when compared to muscle strips from nondiabetic subjects. In addition, we have shown that physiological levels of insulin induce a 1.6-2.0 fold increase in GLUT4 content in skeletal muscle plasma membranes from control subjects, whereas no significant increase was noted in NIDDM skeletal muscle. Impaired insulin-stimulated GLUT4 translocation and glucose transport in NIDDM skeletal muscle is associated with reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI3-kinase activity. The reduced IRS-1 phosphorylation cannot be attributed to decreased protein expression, since the IRS-1 protein content is similar between NIDDM subjects and controls. Altered glycemia may contribute to decreased insulin-mediated glucose transport in skeletal muscle from NIDDM patients. We have shown that insulin-stimulated glucose transport is normalized in vitro in the presence of euglycemia, but not in the presence of hyperglycemia. Thus, the circulating level of glucose may independently regulate insulin stimulated glucose transport in skeletal muscle from NIDDM patients via a down regulation of the insulin signaling cascade.

NIDDM skeletal muscle GLUT4 insulin IRS-1 PI3-kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C: Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. N Engl J Med 329: 1988–1992, 1993PubMedGoogle Scholar
  2. 2.
    Turner RC, Hattersley AT, Shaw JTE, Levy JC: Type II diabetes: clinical aspects of molecular biological studies. Diabetes 44: 1–10, 1995PubMedGoogle Scholar
  3. 3.
    Porte Jr D: β-cells in Type II diabetes mellitus. Diabetes 40: 166–180, 1991PubMedGoogle Scholar
  4. 4.
    DeFronzo RA: The triumvirate: β-cell, muscle or liver. A collusion responsible for NIDDM. Diabetes 37: 667–687, 1988PubMedGoogle Scholar
  5. 5.
    Zierath JR, He L, Gumá A, Odegaard-Wahlström E, Klip A, Wallberg-Henriksson H: Insulin action on glucose transport and plasma membrane content in skeletal muscle from patients with NIDDM. Diabetologia 39:1180–1189, 1996PubMedGoogle Scholar
  6. 6.
    Kelley DE, Mokan M, Mandarino LJ: Metabolic pathways of glucose in skeletal muscle of lean NIDDM patients. Diabetes Care 16: 1158–1166, 1993PubMedGoogle Scholar
  7. 7.
    Efendic S, Östenson CG: Hormonal responses and future treatment of non-insulin-dependent diabetes mellitus (NIDDM). J Internal Med 234: 127–138, 1993PubMedGoogle Scholar
  8. 8.
    Efendic S, Kahn A, Östenson CG: Insulin release in Type 2 diabetes mellitus. Diabete et Metabolisme 20: 81–86, 1994PubMedGoogle Scholar
  9. 9.
    Galuska D, Nolte LA, Zierath JR, Wallberg-Henriksson H: Effect of metformin on insulin-stimulated glucose transport in isolated muscle obtained from patients with NIDDM. Diabetologia 37: 826–832, 1994PubMedGoogle Scholar
  10. 10.
    Laws A, Stefanick ML, Reaven, GM: Insulin resistance and hypertriglygeridemia in nondiabetic relatives of patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 69: 343–347, 1989PubMedGoogle Scholar
  11. 11.
    Vaag A, Henriksen JE, Beck-Nielsen H: Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest 89: 782–788, 1992PubMedGoogle Scholar
  12. 12.
    Eriksson J, Koranyi L, Bourey R, Schalin C, Widén E, Mueckler M, Permutt AM, Groop LC: Insulin resistance in type 2 (non-insulin-dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT4) gene in human skeletal muscle. Diabetologia 35: 143–147, 1992PubMedGoogle Scholar
  13. 13.
    Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR: Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340: 925–929, 1992PubMedGoogle Scholar
  14. 14.
    Seals DR, Hagberg JM, Allen WK, Hurley BF, Dalsky GP, Ehsani AA, Holloszy JO: Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 56: 1521–1525, 1984PubMedGoogle Scholar
  15. 15.
    Friedman JE, Dohm GL, Leggett-Frazier, N, Elton CW, Tapscott EB, Pories WP, Caro JF: Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. J Clin Invest 89: 701–705, 1992PubMedGoogle Scholar
  16. 16.
    DeFronzo RA, Gunnarsson R, Björkman O, Olsson M., Wahren J: Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (Type II) diabetes mellitus. J Clin Invest 76: 149–155, 1985PubMedGoogle Scholar
  17. 17.
    Eriksson E, Franssila-Kallunki A, Ekstrand A et al.: Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Eng J Med 321: 337–343, 1989Google Scholar
  18. 18.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG: Quantitation of muscle glycogen synthase in normal subjects and subjects with non-insulin-dependent diabetes mellitus by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–228, 1990PubMedGoogle Scholar
  19. 19.
    DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000–1007, 1981PubMedGoogle Scholar
  20. 20.
    Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teriis M, Haaparanta M, Bergman J, Solin O, Viopio-Pulkki L-M, Wegelius U, Yki-Jaryinen H: Glucose free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89: 1767–1774, 1992PubMedGoogle Scholar
  21. 21.
    Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP: The effect of graded doses of insulin on total glucose uptake, glucose oxidation and glucose storage in man. Diabetes 31: 957–963, 1982PubMedGoogle Scholar
  22. 22.
    Kelley DE, Mandarino LJ: Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in non-insulin dependent diabetes mellitus. J Clin Invest 86: 1999–2007, 1990PubMedGoogle Scholar
  23. 23.
    Vaag A, Damsbo P, Hother-Nielsen O, Beck-Nielsen H: Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35: 80–88, 1992PubMedGoogle Scholar
  24. 24.
    Zierath JR, Galuska D, Nolte LA, Thörne A, Smedegaard Kristensen J, Wallberg-Henriksson H: Effects of glycemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetoliga 37: 270–277, 1994Google Scholar
  25. 25.
    Andréasson K, Galuska D, Thörne A, Sonnenfeld T, Wallberg-Henriksson H: Decreased insulin-stimulated 3-O-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects. Acta Physiol Scand 142: 255–260, 1991PubMedGoogle Scholar
  26. 26.
    Bonadonna RC, Del Prato S, Saccomani MP, Bonora E, Gulli G, Ferrannini E, Bier D, Cobelli C, DeFronzo RA: Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. J Clin Invest 92: 486–494, 1993PubMedGoogle Scholar
  27. 27.
    Zierath JR: In vitro studies of human skeletal muscle: Hormonal and metabolic regulation of glucose transport. Acta Physiol Scand 155 (Suppl. 626): 1–96, 1995PubMedGoogle Scholar
  28. 28.
    Saad MJA, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR: Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90: 1839–1849, 1992PubMedGoogle Scholar
  29. 29.
    Folli F, Saad MJA, Backer JM, Kahn CR: Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin deficient diabetes mellitus. J Clin Invest 92: 1787–1794, 1993PubMedGoogle Scholar
  30. 30.
    Saad MJA, Folli F, Kahn JA, Kahn CR: Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92: 2065–2072, 1993PubMedGoogle Scholar
  31. 31.
    Heydrick SJ, Jullien D, Gautier N, Tanti JF, Giorgetti S, Van Obberghen E, Marchand-Brustel Y: Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest 91: 1358–1366, 1993PubMedGoogle Scholar
  32. 32.
    Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL: Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95: 2195–2204, 1995PubMedGoogle Scholar
  33. 33.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spegelman BM: IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α-and Obesity-induced insulin resistance. Science: 271: 665–668, 1996PubMedGoogle Scholar
  34. 34.
    Wallberg-Henriksson H, Zetan N, Henriksson J: Reversibility of decreased insulin-stimulated glucose transport capacity in diabetic muscle with in vitro incubation: insulin is not required. J Biol Chem 262: 7665–7671, 1987PubMedGoogle Scholar
  35. 35.
    Nolan JJ, Freidenberg G, Henery R, Reichart D, Olefsky JM: Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 78: 471–477, 1994PubMedGoogle Scholar
  36. 36.
    Grasso G, Frittitta L, Anello M, Russo P, Sesti O, Trsichitta V: Insulin receptor tyrosine kinase activity is altered in both muscle and adipose tissue from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 38: 55–61, 1995PubMedGoogle Scholar
  37. 37.
    Maegawa H, Shigeta Y, Egawa K, Kobayashi M: Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes 40: 815–819, 1991PubMedGoogle Scholar
  38. 38.
    Björnholm M, Kawano Y, Lehtihet M, Zierath JR: Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 406: 524–527, 1997Google Scholar
  39. 39.
    Hitman GA, Hawrami K, McCarthy MI, Viswanathan M, Snehalatha C, Ramachandran A, Tuomilehto J, TuomilehtoWolf E, Nisinen A, Pedersen O: Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease. Diabetologia 38: 481–486, 1995PubMedGoogle Scholar
  40. 40.
    Imai Y, Fusco A, Suzuki Y, Lesniak MA, DAlfonso R, Sesti G, Bertoli A, Lauro R, Accili D, Taylor SI: Variant sequences of insulin receptor substrate-1 in patients with non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 79: 1655–1658, 1994PubMedGoogle Scholar
  41. 41.
    Almind K, Bjørbæk C, Vestergaard H, Hansen T, Echwald S, Pedersen: Amino acid polymorphisms of insulin receptor substrate-1 in noninsulin-dependent diabetes mellitus. The Lancet 342: 828–832, 1993Google Scholar
  42. 42.
    Laakso M, Malkki M, Kekalainen P, Kuusisto J, Deeb SS: Insulin receptor substrate-1 variants in non-insulin-dependent diabetes. J Clin Invest 94:1141–1146, 1994PubMedGoogle Scholar
  43. 43.
    Shepherd PR, Nave BT, Rincon J, Nolte LA, Bevan AP, Siddle K, Zierath JR, Wallberg-Henriksson H: Differential regulation of phosphoinositide 3-kinase adapter subunit variants by insulin in human skeletal muscle. J Biol Chem 272: 19000–19007, 1997PubMedGoogle Scholar
  44. 44.
    Bjørbæk C, Echwald SM, Hubricht P, Vestergaard H, Hansen T, Zierath J, Pedersen O: Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM. Diabetes 43: 976–983, 1994PubMedGoogle Scholar
  45. 45.
    Choi W-H, O'Rahilly S, Buse JB, Rees A, Morgan R, Flier JS, Moller DE: Molecular scanning of insulin-responsive glucose transporter (GLUT4) gene in NIDDM subjects. Diabetes 40: 1712–1718, 1991PubMedGoogle Scholar
  46. 46.
    O'Rahilly S, Krook A. Morgan R, Rees A, Flier JS, Moller DE: Insulin receptor and insulin-responsive glucose transporter (GLUT4) mutations and polymorphisms in a Welsh type 2 (non-insulin-dependent) diabetic population. Diabetologia 35: 486–489, 1992PubMedGoogle Scholar
  47. 47.
    Garvey WT, Maianu L, Hueeksteadt TP, Bimbaum MJ, Molina JM, Ciaraldi TP: Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest 87: 1072–1081, 1991PubMedGoogle Scholar
  48. 48.
    Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn, BB: Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39: 865–870, 1990PubMedGoogle Scholar
  49. 49.
    Handberg A, Vaag A, Damsbo P, Beck-Nielsen H, Vinten J: Expression of insulin regulatable glucose transporters in skeletal muscle from Type 2 (non-insulin dependent) diabetic patients. Diabetologia 33: 625–627, 1990PubMedGoogle Scholar
  50. 50.
    Garvey WT, Maianu L, Hancock JA, Golichowski AM, Baron A: Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 41: 465–475, 1992PubMedGoogle Scholar
  51. 51.
    Andersen PH, Lund S, Vestergaard H, Junker S, Kahn BB, Pedersen O: Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab 77: 27–32, 1993PubMedGoogle Scholar
  52. 52.
    Schalin-Jäntti C, Yki-Järvinen H, Koranyi L, Bourey R, Lindström J, Nikula-Ijäs P, Franssila-Kallunki A, Groop LC: Effect of insulin on GLUT4 mRNA and protein concentrations in skeletal muscle of patients with NIDDM and their first-degree relatives. Diabetologia 37: 401–407, 1994PubMedGoogle Scholar
  53. 53.
    Gumá A, Zierath JR, Wallberg-Henriksson H, Klip A: Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am J Physiol 268: E613–E622, 1995PubMedGoogle Scholar
  54. 54.
    Lund S, Holman GD, Zierath JR, Rincon J, Nolte LA, Clark AE, Pedersen O, Wallberg-Henriksson H: Effect of insulin on GLUT4 translocation and turnover rate in human skeletal muscle as measured by the exofacial bismannose photolabeling technique. Diabetes 46: 1965–1969, 1997PubMedGoogle Scholar
  55. 55.
    Postic C, Leturque A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J: Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266: E548–E559, 1994PubMedGoogle Scholar
  56. 56.
    Rothman DL, Schulman RG, Schulman GI: 31P Nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89: 1062–1075, 1992Google Scholar
  57. 57.
    Printz RL, Ardehali H, Koch S, Granner DK: Human hexokinase II mRNA and gene structure. Diabetes 44: 290–294, 1995PubMedGoogle Scholar
  58. 58.
    Echwald SM, Bjørbæk C, Hansen T, Clausen JO, Vestergaard H, Zierath JR, Printz RL, Granner DK, Pedersen O: Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity. Diabetes 44: 347–353, 1995PubMedGoogle Scholar
  59. 59.
    Laakso M, Malkki M, Deeb SS: Amino acid substitutions in hexokinase II among patients with NIDDM. Diabetes 44: 330–334, 1995PubMedGoogle Scholar
  60. 60.
    Vidal-Puig A, Printz RL, Stratton IM, Granner DK, Moller DE: Analysis of the hexokinase II gene in subjects with insulin resistance and NIDDM and detection of a Gln142→His substitution. Diabetes 44: 340–346, 1995PubMedGoogle Scholar
  61. 61.
    Bogardus C, Lillioja S, Stone K, Mott D: Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest 73: 1185–1190, 1984PubMedGoogle Scholar
  62. 62.
    Roch-Noriand AE, Bergström J, Hultman E: Muscle glycogen and glycogen synthase in normal subjects and in patients with diabetes mellitus: effect of intravenous glucose and insulin administration. Scan J Clin Invest 30: 77–84, 1972Google Scholar
  63. 63.
    Vestergaard H, Bjørbæk C, Andersen PH, Bak JF, Pedersen O: Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients. Diabetes 40: 1740–1745, 1991PubMedGoogle Scholar
  64. 64.
    Bjørbæk C, Vik TA, Echwald SM, Yang P-Y, Vestergaard H, Wang JP, Webb GC, Richmond K, Hansen T, Erikson RL, Miklos GLG, Cohen PTW, Pedersen O: Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and the protein phosphatase-1 genes in muscle from NIDDM patients. Diabetes 44: 90–97, 1995PubMedGoogle Scholar
  65. 65.
    Beck-Nielsen H, Hother-Nielsen O, Vaag A, Alford F: Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: the role of skeletal muscle glucose uptake and hepatic glucose production in the development of hyperglycemia. A critical comment. Diabetologia 37: 217–221, 1994PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Juleen R. Zierath
    • 1
  • Anna Krook
    • 1
  • Harriet Wallberg-Henriksson
    • 1
  1. 1.Department of Clinical PhysiologyKarolinska Hospital, Karolinska InstituteStockholmSweden

Personalised recommendations