Molecular and Cellular Biochemistry

, Volume 172, Issue 1–2, pp 67–79 | Cite as

Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system

  • R. Daniel Gietz
  • Barbara Triggs-Raine
  • Anne Robbins
  • Kevin C. Graham
  • Robin A. Woods


The yeast two-hybrid system is a molecular genetic test for protein interaction. Here we describe a step by step procedure to screen for proteins that interact with a protein of interest using the two-hybrid system. This process includes, construction and testing of the bait plasmid, screening a plasmid library for interacting fusion proteins, elimination of false positives and deletion analysis of true positives. This procedure is designed to allow investigators to identify proteins and their encoding cDNAs that have a biologically significant interaction with your protein of interest.

protein interaction two-hybrid system yeast screening false positive elimination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 340: 45–246, 1989Google Scholar
  2. 2.
    Chien C, Bartel PL, Fields S: The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88: 9578 9582, 1991Google Scholar
  3. 3.
    Durfee T, Becherer K, Chen R-L, Yeh SH, Yang Y, Kilburn AK, Lee WH, Elledge SJ: The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Gene & Dev 7: 55–569, 1993Google Scholar
  4. 4.
    Vojtek AB, Hollenberg SM, Cooper JA: Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214, 1993Google Scholar
  5. 5.
    Ito H, Fukuda Y, Murata K, Kimura A: Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168, 1983Google Scholar
  6. 6.
    Gietz RD, Woods RA: High efficiency transformation of yeast with lithium acetate. In: JR Johnston (ed). Molecular Genetics of Yeast: A Practical Approach. Oxford University Press, Oxford, 1994, pp 121–134Google Scholar
  7. 7.
    Breeden L, Nasmyth K: Regulation of the yeast HO gene. Cold Spring Symposia on Quantitative Biology 50: 643–650, 1985Google Scholar
  8. 8.
    Bartel PL, Fields S: Analyzing protein-protein interactions using the two-hybrid system. Methods Enzymol 254: 241–263, 1995Google Scholar
  9. 9.
    Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1972Google Scholar
  10. 10.
    Kolodziej P, Young RA: Epitope tagging and protein surveillance. Methods Enzymol 194: 508–519, 1991Google Scholar
  11. 11.
    Bartel P, Chien C-T, Sternglanz R, Fields S: Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14: 920–24, 1993Google Scholar
  12. 12.
    Hoffman CS, Winston F: A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57: 267–272, 1987Google Scholar
  13. 13.
    Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coliby high voltage electroporation. Nucl Acids Res 16: 6127–6145, 1988Google Scholar
  14. 14.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989Google Scholar
  15. 15.
    Hanahan D: Studies on transformation of Escherichia coliwith plasmids. J Mol Biol 166: 557–580, 1983Google Scholar
  16. 16.
    Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1517, 1979Google Scholar
  17. 17.
    Burke DT, Olson MV: Preparation of clone libraries in yeast artificial chromosome vectors. Methods Enzymol 194: 252–270, 1991Google Scholar
  18. 18.
    Bardwell L, Cooper AJ, Friedberg EC: Stable and specific association between the yeast recombination and DNA repair proteins RAD1and RAD10 in vitro. Mol Cell Biol 12: 3041–3049, 1992Google Scholar
  19. 19.
    Osborne MA, Dalton S, Kochan JP: The yeast tri-brid system-genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology 13: 1474–1478, 1995Google Scholar
  20. 20.
    Harper JW, Adami G, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdkinteracting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kineses. Cell 75: 805–816, 1993Google Scholar
  21. 21.
    Bartel PL, Chien C-T, Sternglanz R, Fields S: Using the two-hybrid system to detect protein-protein interactions. In: DA Hartley (ed). Cellular Interactions in Development: A Practical Approach. Oxford University Press, Oxford, 1993b, pp 153–179Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • R. Daniel Gietz
    • 1
  • Barbara Triggs-Raine
    • 2
  • Anne Robbins
    • 1
  • Kevin C. Graham
    • 1
  • Robin A. Woods
    • 3
  1. 1.Department of Human GeneticsUniversity of ManitobaWinnipegCanada
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of BiologyUniversity of WinnipegWinnipegCanada

Personalised recommendations