Molecular and Cellular Biochemistry

, Volume 184, Issue 1–2, pp 101–105 | Cite as

Cytoskeleton and mitochondrial morphology and function

  • L. Rappaport
  • P. Oliviero
  • J.L. Samuel


It has been well established that the cytoskeleton is an essential modulator of cell morphology and motility, intracytoplasmic transport and mitosis, however cytoskeletal linkage to the organelles has not been unequivocally demonstrated. Indeed, cytoskeleton appears to be essential in determining and modulating gene phenotype as a function of cellular environment. According to recent studies, the organization of the cytoskeleton network together with associated protein(s) could be essential in regulating mitochondrial function and particularly the permeability of the mitochondrial outer membrane to ADP. The aim of this chapter is to summarize the main properties of the cytoskeletal environment of mitochondria and the possible role(s) of this network in mitochondrial function in myocytes.

heart microtubules desmin ADP porin mitochondria-associated proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cleveland DW, Mooseker MS: Cytoskeleton current opinion. Cell Biol 6: 1–140, 1994Google Scholar
  2. 2.
    Ovadi J: Ultrastructure of the cell. In: Cell Architecture and Metabolic Channelling. Springer-Verlag, New York, Berlin, 1995, pp 22–27Google Scholar
  3. 3.
    Lin A, Krockmalnic G, Penman S: Imaging cytoskeleton-mitochondrial membrane attachments by embedment-free electron microscopy of saponin-extracted cells. Proc Natl Acad Sci USA 87: 8565–8569, 1990Google Scholar
  4. 4.
    Boudreau N, Myers C, Bissel MJ: From laminin to lamin; regulation of tissue-specific gene expression by the ECM. Trend Cell Biol 5: 1–4, 1995Google Scholar
  5. 5.
    Bereiter-Hahn J, Vöhn M: Dynamics of mitochondria in living cells; shape changes, dislocations, fusion and fission of mitochondria. Microscopy Res Tech 27: 198–219, 1994Google Scholar
  6. 6.
    Leterrier JF, Rusakov BA, Nelson DB, Lindén M: Interactions between brain mitochondria and cytoskeleton: Evidence for specialized outer membrane domains involved in the association of cytoskeletonassociated proteins to mitochondrial in situ and in vitro. Micro Res Tech 27: 233–261, 1994.Google Scholar
  7. 7.
    Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T, Tiivel T: Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis; possible involvement of mitochondrialcytoskeleton interactions. J Mol Cell Cardiol 27: 625–645, 1995Google Scholar
  8. 8.
    Saks VA, Tiivel T, Kay L, Novel-Chaté V, Daneshrad Z, Rossi A, Fontaine E, Keriel C, Leverve X, Ventura-Clapier R, Anflour K, Samuel JL, Rappaport L: On the regulation of cellular energetics in health and disease. Mol Cell Biochem 160: 195–208, 1996Google Scholar
  9. 9.
    Penman S: Rethinking cell structure. Proc Natl Acad Sci USA 92: 5251–5257, 1995Google Scholar
  10. 10.
    Wang N, Ingber DE: Control of cytoskeletal mechanics by extracellular matrix, cell shape and mechanical tension. Biophys J 66: 2181–2189, 1994Google Scholar
  11. 11.
    Ingber DE: Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104: 613–627, 1993Google Scholar
  12. 12.
    Roskelley CD, Srebow A, Bissel JA: A hierarchy of ECM-mediated signalling regulates tissue specific gene expression. Curr Opin Cell Biol vol 5: 736–743, 1995Google Scholar
  13. 13.
    Cortassa S, Aon MA: Entrainment of enzymatic activity by the dynamics of cytoskeleton. In: HV Westenhoff, JL Snop, FE Shen, JE Wighes, BN Khatodenko (eds). Biothermo Kinetics of the Living Cell. Biochtermokinetics Press, Amsterdam, 1996, pp 337–342Google Scholar
  14. 14.
    Mitchell P: The ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem 95: 1–20, 1979Google Scholar
  15. 15.
    Saks VA, Khuchua ZA, Vasilyeva EV, Belikova YO, Kuznetsov A: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration. A synthesis. J Mol Cell Biochem 133/134: 155–192, 1994Google Scholar
  16. 16.
    Ball EH, Singer SJ: Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci USA 79: 123–126, 1982Google Scholar
  17. 17.
    Mose-Larsen P, Bravo R, Fey SJ, Small JV, Celis JE: Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts. Cell 31: 681–692, 1982Google Scholar
  18. 18.
    Bereiter-Hahn J: Behavior of mitochondria in the living cell. Intern Rev Cytol 122: 1–62, 1990Google Scholar
  19. 19.
    Leterrier JF, Rusakov DA, Lindén M: Statistical analysis of the surface distribution of microtubule-associated proteins (MAPs) bound in vitro to rat brain mitochondria and labelled by 10 mn gold-coupled antibodies. Bulletin de l'Associations des Anatomistes 78: 46–51, 1994Google Scholar
  20. 20.
    Heggeness MH, Simon M, Singer SJ: Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA 75: 3863–3866, 1978Google Scholar
  21. 21.
    Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takedamura R, Yamasaki H, Hirikawa N: K1F1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79: 1209–1220, 1994Google Scholar
  22. 22.
    Hirokawa; Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by quick-freeze, deep etching method. J Cell Biol 94: 129–142, 1982Google Scholar
  23. 23.
    Leterrier J, Eyer J, Weiss DG, Linden M: In vitro studies of the physical interactions between neurofilaments, microtubules and mitochondria isolated from the central nervous system. In: Living Cell In Four Dimensions. Proc Conf Amer Inst Physics. 226: 91–105, 1991Google Scholar
  24. 24.
    Drubin DG, Jones HD, Wertman KF: Actin structure and function: Roles in mitochondrial organization and morphogenesis in buding yeast and identification of the phalloidin-binding site. Mol Biol Cell 4: 1277–1294, 1993Google Scholar
  25. 25.
    Martz D, Lasek RJ, Brady ST, Allen RD: Mitochondrial motility in axons: Membranous organelles may interact with the force generating system through multiple surface binding sites. Cell Motil Cyto 4: 89–101, 1984Google Scholar
  26. 26.
    Smith DS, Jarlfors U, Cameron BF: Morphological evidence for the participation of microtubules in axonal transport. Ann NY Acad Sci 253: 472–506, 1975Google Scholar
  27. 27.
    Morris RL, Hollenbeck PJ: Axonal transport of mitochondrial along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131: 1315–1326, 1995Google Scholar
  28. 28.
    Almahbobi G, Williams LJ, Han XG, Hall PF: Binding of lipid droplets and mitochondria to intermediate filaments in rat Leydig cells. J Reprod Fert 98: 209–217, 1993Google Scholar
  29. 29.
    Lindén M, Nelson BD, Loncar D, Leterrier JF: Studies on the interaction between mitochondria and the cytoskeleton. J Bioenerg Biomem 21: 507–518, 1989Google Scholar
  30. 30.
    Lindén M, Gellefors P, Nelson BD: Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane. Biochem J 208: 77–82, 1982Google Scholar
  31. 31.
    Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy-and protein-transfer, (review) Biochim Biophys Acta 1071: 291–312, 1991Google Scholar
  32. 32.
    Levine J, Willard M: Fodrin: Axonally transported polypeptide associated with the internal periphery of many cells. J Cell Biol 90: 631–643, 1994Google Scholar
  33. 33.
    Arai M, Cohen JA: Subcellular localization of the F5 protein to the neuronal membrane-associated cytoskeleton. J Neurosci Res 38: 348–357, 1994Google Scholar
  34. 34.
    Towle CA, Treadwell BV: Identification of a novel mammalian annexin. CDNA cloning, sequence analysis, and ubiquitous expression of the annexin XI gene. J Biol Chem 267: 5416–5423, 1992Google Scholar
  35. 35.
    Sun J, Bird CH, Salem HH, Bird P: Association of annexin V with mitochondria. FEBS Lett 329: 79–83, 1993Google Scholar
  36. 36.
    Sogo FL, Yaffe MP: Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol 126: 1361–1373, 1994Google Scholar
  37. 37.
    McConnell SJ, Yaffe MP: Nuclear and mitochondrial inheritance in yeast depends on novel cytoplasmic structures defined by the MDM1 protein. J Cell Biol 118: 385–395, 1992Google Scholar
  38. 38.
    Burgess SM, Delannoy M, Jensen RE: MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondrial. J Cell Biol 126: 1375–1391, 1994Google Scholar
  39. 39.
    Yaffe MP, Harata D, Verdes F, Eddison M, Toda T, Nurse P: Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci USA 93: 11664–11668, 1996Google Scholar
  40. 40.
    Smith MG, Simon VR, O'Sullivan H, Pon LA: Organelle-cytoskeletal interactions: Actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 6: 1381–1396, 1995Google Scholar
  41. 41.
    Rappaport L, Samuel JL: Microtubules in cardiac myocytes. Int Rev Cytol 1: 1310–1143, 1988Google Scholar
  42. 42.
    Samuel JL, Schwartz K, Lompré AM, Delcayre C, Marotte F, Swynghedauw B, Rappaport L: Immunological quantitation and localization of tubulin in adult rat heart isolated myocytes. Eur J Cell Biol 31: 99–106, 1983Google Scholar
  43. 43.
    Watkins SC, Samuel JL, Marotte F, Bertier-Savalle B, Rappaport L: Microtubules and desmin filaments during the onset of heart hypertrophy in rat: A double immunoelectron microscope study. Circ Res 60: 327–336, 1987Google Scholar
  44. 44.
    Sun J, Bird CH, Salem HH, Bird P: Association of annexin V with mitochondria. FEBS Lett 329: 79–83, 1993Google Scholar
  45. 45.
    Velasco G, Sànchez C, Geelen MH, Guzmàn M: Are cytoskeletal components involved in the control of hepatic carnitine palmitoyltransferase I activity? Biochem Biophys Res Comm 224: 754–759, 1996Google Scholar
  46. 46.
    Lazarides E, Granger BL: Transcytoplasmic integration in avian erythrocytes and striated muscles; the role of intermediate filaments. Mol Cell Biol 2: 143–162, 1983Google Scholar
  47. 47.
    Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y: Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134: 1255–1270, 1996Google Scholar
  48. 48.
    Li Z, Colucci-Guyon E, Pinçon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C: Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Devel Biol 175: 362–366, 1996Google Scholar
  49. 49.
    Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport LR, Usson Y, Leverve X, Paulin D, Saks VA: Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322: 41–59, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • L. Rappaport
    • 1
  • P. Oliviero
    • 1
  • J.L. Samuel
    • 1
  1. 1.Unité 127 INSERM, IFR <<Circulation>>University D Diderot, Hôpital LariboisièreParisFrance

Personalised recommendations