Molecular and Cellular Biochemistry

, Volume 170, Issue 1–2, pp 43–51 | Cite as

Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells

  • Antonio D. McCarthy
  • Susana B. Etcheverry
  • Liliana Bruzzone
  • Ana M. Cortizo
Article

Abstract

Two different lines of osteoblast-like cells were used to investigate the effect of advanced glycation end-products of bovine serum albumin on cell proliferation and differentiation. These parameters were found to be both dose- and time-dependent. Cell proliferation remained unchanged after a 24 h incubation period, it increased after intermediate periods of incubation with advanced glycation end-products, but was found to be depressed after several days incubation. Cellular alkaline phosphatase activity followed a similar pattern: an initial increase induced by advanced glycation end-products was generally followed, after relatively long incubation periods, by a slight but significant decrease in this parameter. 45Ca2+ uptake was only significantly inhibited by advanced glycation end-products after 24 h incubation. These results suggest that advanced glycation end-products directly regulate osteoblast proliferation and differentiation in a dose and time dependent manner.

advanced glycation endproducts diabetes mellitus osteoblastic cells cell proliferation cell differentiation bone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levin ME, Boisseau VC, Avioli LV: Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294: 741–245, 1976Google Scholar
  2. 2.
    Rosenbloom AL, Lezotte DC, Weber FT, Gudat J, Heller DR, Weber ML, Klein S, Kennedy BB: Diminution of bone mass in childhood diabetes. Diabetes 26: 1052–1055, 1977Google Scholar
  3. 3.
    Santiago JV, McAlister WH, Ratzan SK, Bussman Y, Haymond MW, Schackelford G, Weldon, W: Decreased cortical thickness and osteopenia in children with diabetes mellitus. J Clin Endocrinol Metab 45: 845–848, 1977Google Scholar
  4. 4.
    Shore RM, Chesney RW, Mazess RB, Rose PG, Bargman GJ: Osteopenia in juvenile diabetes. Calcif Tissue Int 33: 455–457, 1981Google Scholar
  5. 5.
    Hui SL, Epstein S, Johnston CC Jr: A prospective study of bone mass in patients with type I diabetes. J Clin Endocrinol Metab 60: 74–80, 1985Google Scholar
  6. 6.
    McNair P, Madsbad S, Christensen MS, Christiansen C, Faber OK, Binder C, Transbol I: Bone mineral loss in insulin-treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol (Copenh) 90: 463–472, 1979Google Scholar
  7. 7.
    Mathiassen B, Nielsen S, Ditzel J, Rodbro P: Long-term bone loss in insulin-dependent diabetes mellitus. J Intern Med 227: 325–327, 1990Google Scholar
  8. 8.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM: Bone loss and bone turnover in diabetes. Diabetes 44: 775–782, 1995Google Scholar
  9. 9.
    Wiske PS, Wentworth SM, Norton JA, Epstein S, Johnston CC: Evaluation of bone mass and growth in young diabetics. Metabolism 31: 848–854, 1982Google Scholar
  10. 10.
    Kayath MJ, Dib SA, Vieiaa JG: Prevalence and magnitude of osteopenia associated with insulin-dependent diabetes mellitus. J Diabetes Complic 8: 97–104, 1994Google Scholar
  11. 11.
    Renzende AA, Petenusci SO, Urbinati EC, Leone FA: Kinetic properties of osseous plate alkaline phosphatase from diabetic rats. Com Biochem Physiol A 104: 469–474, 1993Google Scholar
  12. 12.
    Fargcs S, Halmos T, Salumon F: Bone changes in diabetes mellitus. Isr J Med Sci: 782–783, 1972Google Scholar
  13. 13.
    Weiss RE, Reddi AH: Influence of experimental diabetes and insulin on matrix-induced cartilage and bone differentiation. Am J Physiol 238: E200–E207, 1980Google Scholar
  14. 14.
    Monnier VM, Cerami A: Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211: 491–493, 1981Google Scholar
  15. 15.
    Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn RR: Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med 314: 403–408, 1986Google Scholar
  16. 16.
    Monnier VM, Kohn RR, Cerami A: Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci USA 81: 583–587, 1984Google Scholar
  17. 17.
    Beisswenger PJ, Makita Z, Curphey TJ, Moore LL, Jean S, Brinck-Johnsen T, Bucala R, Vlassara H: Formation of immunochemical ad-vanced glycosylation end products precedes and correlates with early.51 manifestations of renal and retinal disease in diabetes. Diabetes 44: 824–829, 1995Google Scholar
  18. 18.
    Vlassara H, Brownlee M, Cerami A: High-affinity receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci USA 82: 5588–5592, 1985Google Scholar
  19. 19.
    Skolnik KY, Yang Z, Makita Z, Radoff S, Vlassara H: Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodeling and diabetic nephropathy. J Exp Med 174: 931–939, 1991Google Scholar
  20. 20.
    Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A: Cachectin/TNF and IL-1 induced by glucose modified proteins: role in normal tissue remodeling. Science 240: 1546–1548, 1988Google Scholar
  21. 21.
    Kirstein M, Aston C, Hintz R, Vlassara H: Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest 90: 439–446, 1992Google Scholar
  22. 22.
    Imani F, Horii Y, Suthanthiran M, Skolnik KY, Makita Z, Sharma V, Sehajpal P, Vlassara H: Advanced glycosylation end product-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon g: role in tissue remodeling. J Exp Med 178: 2165–2172, 1993Google Scholar
  23. 23.
    Brownlee M: Glycation and diabetic complications. Diabetes 43: 836–841, 1994Google Scholar
  24. 24.
    Vlassara H, Bucala R, Striker L: Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 70: 138–151, 1994Google Scholar
  25. 25.
    Tomasek JJ, Meyers SW, Basinger JB, Green DJ, Shew RL: Diabetic and age-related enhancement of collagen-linked fluorescence in cortical bones of rats. Life Sci 55: 855–861, 1994Google Scholar
  26. 26.
    Locatto ME, Abrazon H, Caferra D, Fernandez MC, Alloatti R, Puche RC: Growth and development of bone mass in untreated alloxan diabetic rats. Effects of collagen glycosylation and parathyroid activity on bone turnover. Bone Miner 23: 129–144, 1993Google Scholar
  27. 27.
    Fong Y, Edelstein D, Wang EA, Brownlee M: Inhibition of matrix-induced bone differentiation by advanced glycation end-products in rats. Diabetologia 36: 802–807, 1993Google Scholar
  28. 28.
    Vlassara H, Moldawer L, Chan B. Macrophage/monocyte receptor for nonenzymatically glycosylated proteins is upregulated by cachectin/ tumor necrosis factor. J Clin Invest 84, 1813–1820, 1989Google Scholar
  29. 29.
    Yang Z, Makita Z, Horii Y, Brunelle S, Cerami A, Sehajpal P, Suthanthiran M, Vlassara H. Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macro-phage receptor for glucose-modified proteins. J Exp Med 174: 515–524, 1991Google Scholar
  30. 30.
    Partridge NC, Alcorn D, Michelangeli VP, Ryan G, Martin TJ: Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res 43: 4308–4312, 1983Google Scholar
  31. 31.
    Esposito C, Gerlach H, Brett J, Stern D, Vlassara H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 170: 1387–1407, 1989Google Scholar
  32. 32.
    Radoff S, Makita Z, Vlassara H. Radioreceptor assay for advanced glycosylation end products. Diabetes 40: 1731–1738, 1991Google Scholar
  33. 33.
    Quarles LD, Yahay DA, Lever LW, Caton R, Wenstrup RJ: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Min Res 7: 683–692, 1992Google Scholar
  34. 34.
    Okajima T, Nakamura K, Zhang H, Ling N, Tanabe T, Yasuda T, Rosenfeld RR: Sensitive colorimetric bioassay for insulin-like growth factor (IGF) stimulation of cell proliferation and glucose consumption: use in studies of IGF analogs. Endocrinology 130: 2201–2212, 1992Google Scholar
  35. 35.
    Cortizo AM, Etcheverry SB: Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of os-teoblast-like UMR106 cells. Mol Cell Biochem 145: 97–102, 1995Google Scholar
  36. 36.
    Bradford M: Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976Google Scholar
  37. 37.
    Stein GS, Lian JB: Molecular mechanism mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Rev 14: 424–442, 1993Google Scholar
  38. 38.
    Vlassara H, Fuh H, Makita Z, Krunghrai S, Cerami A, Bucala R: Exogenous advanced glycosylation endproducts induce complex vascu-lar dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA 89: 12043–12047, 1992Google Scholar
  39. 39.
    Baylink DJ, Finkelman RD, Mohan S: Growth factors to stimulate bone formation. J Bone Min Res 8: Supp 2, S565–S572, 1993Google Scholar
  40. 40.
    Radoff S, Vlassara H, Cerami A,: Characterization of a solubilized cell surface binding protein on macrophages specific for protein modified nonenzymatically by advanced glycosylation endproducts. Arch Biochem Biophys 263: 418–423, 1988Google Scholar
  41. 41.
    Davidai G, Lee A, Schuartz Y, Hazum E: PDGF induces tyrosine phosphorylation in osteoblast-like cells: relevance to mitogenesis. Am J Physiol 263: E205–E209, 1992Google Scholar
  42. 42.
    Lau K-HW, Tanimoto H, Baylink DJ: Vanadate stimulates bone cell proliferation and bone collagen synthesis in vitro. Endocrinology 123: 2858–2867, 1988Google Scholar
  43. 43.
    Exton JH: Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J 2: 2670–2676, 1988Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Antonio D. McCarthy
    • 1
  • Susana B. Etcheverry
    • 1
  • Liliana Bruzzone
    • 2
  • Ana M. Cortizo
    • 1
  1. 1.Cátedra de Bioquímica Patólogica, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.División Química Analítica, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations