Molecular and Cellular Biochemistry

, Volume 184, Issue 1–2, pp 141–151 | Cite as

Oligomeric state and membrane binding behaviour of creatine kinase isoenzymes: Implications for cellular function and mitochondrial structure

  • Olaf Stachowiak
  • Uwe Schlattner
  • Max Dolder
  • Theo Wallimann
Article

Abstract

The membrane binding properties of cytosolic and mitochondrial creatine kinase isoenzymes are reviewed in this article. Differences between both dimeric and octameric mitochondrial creatine kinase (Mi-CK) attached to membranes and the unbound form are elaborated with respect to possible biological function. The formation of crystalline mitochondrial inclusions under pathological conditions and its possible origin in the membrane attachment capabilities of Mi-CK are discussed. Finally, the implications of these results on mitochondrial energy transduction and structure are presented.

Mi-CK dimer/octamer equilibrium membrane binding domains lipid vesicle cross-linking VDAC (porin) ANT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bessman SP, Geiger PJ: Transport of energy in muscle: The phosphorylcreatine shuttle. Science 211: 449–452, 1981Google Scholar
  2. 2.
    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The phosphocreatine circuit for cellular energy homeostasis. Biochem J 281: 21–40, 1992Google Scholar
  3. 3.
    Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166, 1992Google Scholar
  4. 4.
    Wallimann T: Dissecting the role of creatine kinase. Curr Biol 4: 42–46, 1994Google Scholar
  5. 5.
    Saks VA, Ventura-Clapier R, Aliev MK: Metabolic control and metabolic capacity: Two aspects of creatine kinase functioning in cells. Biochim Biophys Acta 1274: 81–88, 1996Google Scholar
  6. 6.
    Sweeney HL: The importance of the creatine kinase reaction: The concept of metabolic capacitance. Med Sci Sports Exerc 26: 30–36, 1994Google Scholar
  7. 7.
    Wallimann T, Hemmer W: Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134: 193–220, 1994Google Scholar
  8. 8.
    Kaldis P, Kamp G, Piendl T, Wallimann T: Functions of creatine kinase isoenzymes in spermatozoa. Adv Develop Biol: 5: 275–312, 1997Google Scholar
  9. 9.
    Blethen SL, Kaplan NO: Characteristics of arthropod arginine kinases. Biochemistry 7: 2123–2135, 1968Google Scholar
  10. 10.
    Suzuki T, Furukohori T: Evolution of phosphagen kinase. J Mol Biol 237: 353–357, 1994Google Scholar
  11. 11.
    Stein LD, Harn DA, David JR: A cloned ATP:Guanidino kinase in the trematode Schistosoma mansoni has a novel duplicated structure. J Biol Chem 265: 6582–6588, 1990Google Scholar
  12. 12.
    Jacobus WE, Lehninger AL: Creatine kinase of rat heart mitochondria: Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803–4810, 1973Google Scholar
  13. 13.
    Gross M, Wallimann T: Kinetics of assembly and dissociation of the mitochondrial creatine kinase octamer. A fluorescence study. Biochemistry 32: 13933–13940, 1993Google Scholar
  14. 14.
    Wallimann T, Schlösser T, Eppenberger HM: Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem 259: 5238–5246, 1984Google Scholar
  15. 15.
    Ventura-Clapier R, Veksler V, Hoerter JA: Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 133/134: 125–144, 1994Google Scholar
  16. 16.
    Rossi AM, Volpe P, Eppenberger HM, Wallimann T: Ca2+ pumping is supported by SR-bound creatine kinase. In: U Carraro (ed). Sarcomeric and non-sarcomeric muscles: basic and applied research prospects for the 90's. Unipress Padova, 1988Google Scholar
  17. 17.
    Minajeva A, Ventura-Clapier R, Veksler V: Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflugers Arch Eur J Physiol 432: 904–912, 1996Google Scholar
  18. 18.
    Hemmer W, Riesinger I, Wallimann T, Eppenberger HM, Quest AFG: Brain-type creatine kinase in photoreceptor cell outer segments: Role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J Cell Sci 106: 671–684, 1993Google Scholar
  19. 19.
    Klingenberg M: The ADP/ATP carrier in mitochondrial membranes. In: A.N. Martonosi (ed). The enzymes of biological membranes, Vol 4. Plenum, 1985, pp 511–552Google Scholar
  20. 20.
    Klingenberg M: Dialectics in carrier research: The ADP/ATP carrier and the uncoupling protein. J Bioenerg Biomembr 25: 447–457, 1993Google Scholar
  21. 21.
    Bessman SP: The creatine phosphate energy shuttle-the molecular asymmetry of a pool. Anal Biochem 161: 519–523, 1984Google Scholar
  22. 22.
    Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T: Differential expression of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation 46: 77–87, 1991Google Scholar
  23. 23.
    Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W: Structure of mitochondrial creatine kinase. Nature 381: 341–345, 1996Google Scholar
  24. 24.
    Schnyder T, Winkler H, Gross H, Eppenberger HM, Wallimann T: Crystallization of mitochondrial creatine kinase. J Biol Chem 266: 5318–5322, 1991Google Scholar
  25. 25.
    Schnyder T, Rojo M, Furter R, Wallimann T: The structure of mitochondrial creatine kinase and its membrane binding properties. Mol Cell Biochem 133/134: 115–123, 1994Google Scholar
  26. 26.
    Schnyder T, Cyrklaff M, Fuchs K, Wallimann T: Crystallization of mitochondrial creatine kinase on negatively charged lipid layers. J Struct Biol 112: 136–147, 1994Google Scholar
  27. 27.
    Rojo M, Hovius R, Demel R, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290–20295, 1991Google Scholar
  28. 28.
    Schlegel J, Wyss M, Schurch U, Schnyder T, Quest A, Wegmann G, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. J Biol Chem 263: 16963–16969, 1988Google Scholar
  29. 29.
    Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase from chicken brain: Purification, biophysical characterisation, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem 265: 15900–15908, 1990Google Scholar
  30. 30.
    Gross M, Furter-Graves EM, Wallimann T, Eppenberger HM, Furter R: The tryptophan residues of mitochondrial creatine kinase: Roles of Trp-223, Trp-206, and Trp-264 in active-site and quarternary structure formation. Protein Science 3: 1058–1068, 1994Google Scholar
  31. 31.
    Gross M: The tryptophan residues of mitochondrial creatine kinase: Roles in enzyme structure and function. Ph.D. Thesis, No. 10719, Swiss Federal Institute of Technology, Zürich, 1994Google Scholar
  32. 31a.
    Stachowiak O, Dolder M, Wallimann T, Richter C: Mitochondrial creatine kinase is a prime target of peroxynitrate-induced modification and inactivation. Submitted, 1998Google Scholar
  33. 32.
    Schlegel J, Wyss M, Eppenberger HM, Wallimann T: Functional Studies with the octameric and dimeric form of mitochondrial creatine kinase. J Biol Chem 265: 9221–9227, 1990Google Scholar
  34. 33.
    Gross M, Wallimann T: Dimer-dimer interactions in octameric mitochondrial creatine kinase. Biochemistry 34: 6660–6667, 1995Google Scholar
  35. 34.
    Kaldis P, Wallimann T: Functional differences between dimeric and octameric mitochondrial creatine kinase. Biochem J 308: 623–627, 1995Google Scholar
  36. 35.
    Hossle JP, Schlegel J, Wegmann G, Wyss M, Böhlen P, Eppenberger HM, Wallimann T, Perriard JC: Distinct tissue specific mitochondrial creatine kineses from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun 151: 408–416, 1988Google Scholar
  37. 36.
    Lill R, Neupert W: Mechanisms of protein import across the mitochondrial outer membrane. Trends Cell Biol 6: 56–61, 1996Google Scholar
  38. 37.
    Baskin RJ, Deamer DW: A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum. J Biol Chem 245: 1345–1347, 1970Google Scholar
  39. 38.
    Levitsky DO, Levchenko TS, Saks VA, Sharov VG, Smirnov VN: The role of creatine phosphokinase in supplying energy for calcium pump system of heart sarcoplasmic reticulum. Membr Biochem 2: 81–96, 1978Google Scholar
  40. 39.
    Rossi AM, Eppenberger HM, Volpe P, Cotruto R, Wallimann T: Muscle-type creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258–5266, 1990Google Scholar
  41. 40.
    Guerrero ML, Beron J, Spindler B, Groscurth P, Wallimann T, Verrey F: Metabolic support of Na+-pump in epically permeabilized A6 kidney cell epithelia: Role of creatine kinase. Am J Physiol 272: C697–C706, 1997Google Scholar
  42. 41.
    Blum H, Nioka S, Johnson RG: Activation of the Na+/K+-ATPase in Narcine brasiliensis. Proc Natl Acad Sci USA 1984: 1247–1251, 1990Google Scholar
  43. 42.
    Borroni E: Role of creatine phosphate in the discharge of the electric organ of Torpedo marmorata. J Neurochem 43: 795–798, 1984Google Scholar
  44. 43.
    Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle? J Mol Cardiol 19: 115–118, 1984Google Scholar
  45. 44.
    Wallimann T, Waltzhöny D, Wegmann G, Moser H, Eppenberger HM, Barrantes FJ: Subcellular localisation of creatine kinase in Torpedo electrocytes: Association with acetylcholine receptor-rich membranes. J Cell Biol 100: 1063–1072, 1985Google Scholar
  46. 45.
    Blum H, Balschi JA, Johnson RG: Coupled in vivo activity of creatine phosphokinase and the membrane-bound (Na+/K+)-ATPase in the resting and stimulated electric organ of the electric fish Narcine brasiliensis. J Biol Chem 266: 10254–10259, 1991Google Scholar
  47. 46.
    Mühlebach S, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M: Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biol 133/134: 245–262, 1994Google Scholar
  48. 47.
    Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic reticulum-bound creatine kinase and Ca2+-ATPase. Eur J Biochem 213: 973–980, 1993Google Scholar
  49. 48.
    Korge P, Campbell, KB: Local ATP regeneration is important for sarcoplasmic reticulum Ca2+ pump function. Am J Physiol 267: C357–C366, 1994Google Scholar
  50. 49.
    Ferris CD, Huganir RL, Snyder SH: Calcium flux mediated by purified inositol 1,4,5,-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci 1984: 2147–2151, 1990Google Scholar
  51. 50.
    Steele DS, McAinish AM, Smith GL: Effects of creatine phosphate and inorganic phosphate on the sarcoplasmic reticulum of saponintreated rat heart. J Physiol (London) 483: 155–166, 1995Google Scholar
  52. 51.
    Quest AFG, Chadwick JK, Wothe DD, McIlhinney RAJ, Shapiro BM: Myristoylation of flagellar creatine kinase in the sperm phosphocreatine shuttle is linked to its membrane association properties. J Biol Chem 267: 15080–15085, 1992Google Scholar
  53. 52.
    Quest AFG, Hervey DJ, McIlhinney RAJ: Identification of a nonmyristoylated pool of sea urchin sperm flagellar creatine kinase: Myristoylation is necessary for efficient lipid association. J Biol Chem, submittedGoogle Scholar
  54. 53.
    Rojo M, Hovius R, Demel R, Wallimann T, Eppenberger HM, Nicolay K: Interaction of mitochondrial creatine kinase with model membranes. FEBS Lett 281: 123–129, 1991Google Scholar
  55. 54.
    Müller M, Cheneval D, Carafoli E: The mitochondrial creatine phosphokinase is associated with inner membrane cardiolipin. In: N. Brautbar (ed). Myocardial and Skeletal Muscle Bioenergetics. 1985, Plenum, pp 151–155Google Scholar
  56. 55.
    Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy-and protein-transfer. Biochim Biophys Acta 1071: 291–312, 1991Google Scholar
  57. 56.
    Knoll G, Brdiczka D: Changes in freeze-fractured mitochondrial membranes correlated to their energetic state: Dynamic interactions of the boundary membranes. Biochim Biophys Acta 733: 102–110, 1983Google Scholar
  58. 57.
    Bücheler K, Adams V, Brdiczka D: Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta, 1056: 233–242, 1991Google Scholar
  59. 58.
    Adams V, Bosch W, Schlegel J, Wallimann T, Brdiczka D: Further characterization of contact sites from mitochondria of different tissues: Topology of peripheral kineses. Biochim Biophys Acta 981: 213–225, 1989Google Scholar
  60. 59.
    Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D: Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061: 215-225, 1991Google Scholar
  61. 60.
    Moran O, Sorgato MC: High-conductance pathways in mitochondrial membranes. J Bioenerg Biomembr 24: 91–98, 1992Google Scholar
  62. 61.
    Benz R: Permeation of hydrophilic solutes through mitochondrial outer membranes: Review on mitochondrial porins. Biochim Biophys Acta 1197: 167–196, 1994Google Scholar
  63. 62.
    Benz R, Brdiczka D: The cation-selective substate of the mitochondrial outer membrane pore: Single-channel conductance and influence on intermembrane and peripheral kinases. J Bioenerg Biomembr 24: 33–39, 1992Google Scholar
  64. 63.
    Saks VA, Belikova YO, Kuznetsov AV, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol 261: 30–38, 1991Google Scholar
  65. 64.
    Brdiczka D: Function of the outer mitochondrial compartment in regulation of energy metabolism. Biochim Biophys Acta 1187: 264–269, 1994Google Scholar
  66. 65.
    Brdiczka D, Wallimann T: The importance of the outer mitochondrial compartment in regulation of energy metabolism. Mol Cell Biochem 133/134: 69–83, 1994Google Scholar
  67. 66.
    Brdiczka D, Kaldis P, Wallimann T: In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269: 27640–27644, 1994Google Scholar
  68. 67.
    Beutner G, Rück A, Riede B, Welte W, Brdiczka D: Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396: 189–195, 1996Google Scholar
  69. 68.
    De Pinto V, Palmieri F: Transmembrane arrangement of mitochondrial porin or voltage-dependent anion-channel (VDAC). J Bioenerg Biomembr 24: 21–26, 1992Google Scholar
  70. 69.
    Hovius R, Lambrechts H, Nicolay K, de Kruijff B: Improved methods to isolate and subfractionate rat liver mitochondria: Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021: 217–226, 1990Google Scholar
  71. 70.
    Schlame M, Augustin W: Association of creatine kinase with rat heart mitochondria: high and low affinity binding sites and the involvement of phospholipids. Biomed Biochim Acta 44: 1083–1088, 1985Google Scholar
  72. 71.
    Lipskaya TY, Templ VD, Belousova LV, Molokova EV, Rybina IV: Investigation of the interaction of mitochondrial creatine kinase with the membranes of the mitochondria. Biochimia USSR 45: 877–886, 1980Google Scholar
  73. 72.
    Brooks SPJ, Suelter CH: Association of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Arch Biochem Biophys 253: 122–132, 1984Google Scholar
  74. 73.
    Killian JA, Koorengevel MC, Bouwstra JA, Gooris G, Dowhan W, De Kruijff B: Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta 1189: 225–232, 1994Google Scholar
  75. 74.
    Cheneval D, Carafoli E, Powell GL, Marsh D: A spin-label electron spin resonance study of the binding of mitochondrial creatine kinase to cardiolipin. Eur J Biochem 186, 415–419, 1989Google Scholar
  76. 75.
    Kupriyanov VV, Elizarova GV, Saks VA: Determination of the molar content of creatine kinase in heart mitochondria using SH reagents. Biochimia USSR 46: 762–772, 1981Google Scholar
  77. 76.
    Barbour RL, Ribaudo J, Chan SHP: Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. J Biol Chem 259: 8242–8251, 1984Google Scholar
  78. 77.
    Kuznetsov AV, Saks VA: Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: Determination of their molar stoichiometry. Biochem Biophys Res Comm 134: 359–366, 1986Google Scholar
  79. 78.
    Saks VA, Khuchua ZA, Kuznetsov AV: Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. Biochim Biophys Acta 891: 138–144, 1984Google Scholar
  80. 79.
    Font B, Eichenberger D, Goldschmidt D and Vial C: Interaction of creatine kinase and hexokinase with the mitochondrial membranes, and self-association of creatine kinase: Crosslinking studies. Mol Cell Biochem 78: 131–140, 1984Google Scholar
  81. 80.
    Beyer K, Klingenberg M: ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24: 3821–3826, 1985Google Scholar
  82. 81.
    Drees M, Beyer K: Interaction of phospholipids with the detergentsolubilized ADP/ATP carrier protein as studied by spin-label electron spin resonance. Biochemistry 27: 8584–8591, 1988Google Scholar
  83. 82.
    Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OYu, Kuznetsov AV: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration-a synthesis. Mol Cell Biochem 133/134: 155–192, 1994Google Scholar
  84. 83.
    Cheneval D, Carafoli E: Identification and primary structure of the cardiolipin binding domain of mitochondrial creatine kinase. Eur J Biochem 171: 1–9, 1988Google Scholar
  85. 84.
    Saks VA, Khuchua ZA, Kuznetsov AV, Veksler VI, Sharov VG: Heart mitochondria in physiological salt solution: not ionic strength but salt composition is important for association of creatine kinase with the inner membrane surface. Biochem Biophys Res Comm 139: 1262–1271, 1986Google Scholar
  86. 85.
    Vial C, Marcillat O, Goldschmidt D, Font B, Eichenberger D: Interaction of creatine kinase with phosphorylating rabbit heart mitochondria and mitoplasts. Arch Biochem Biophys 251: 558–566, 1986Google Scholar
  87. 86.
    Hall N, Deluca M: Binding of creatine kinase to heart and liver mitochondria in vitro. Arch Biochem Biophys 201: 674–677, 1980Google Scholar
  88. 87.
    Hall N, Deluca M: The effect of inorganic phosphate on creatine kinase in respiring rat heart rnitochondria. Arch Biochem Biophys 229: 477–482, 1984Google Scholar
  89. 88.
    Stachowiak O, Dolder M, Wallimann T: Membrane-binding and lipid vesicle crosslinking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 35: 15522–15528, 1996Google Scholar
  90. 89.
    Schlattner U, Forstner M, Eder M, Stachowiak O, Fritz-Wolf K, Wallimann T: Functional aspects of the X-ray structure of mitochondrial creatine kinase: A molecular physiology approach. Mol Cell Biochem, in this issueGoogle Scholar
  91. 90.
    Piendl T: Cryoimmobilisation-based electron microscopy of mitochondria in situ and in vitro: A new model of contact sites for energy export. Ph.D. thesis Nr. 11830, Swiss Federal Institute of Technology, ETH Zürich, 1996Google Scholar
  92. 91.
    Rietveld AG, Koorengevel MC, De Kruijff B: Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J 14: 5506–5513, 1995Google Scholar
  93. 92.
    Tikhonova IM, Andreyev AY, Antonenko YN, Kaulen AD, Komrakov AY, Skulachev VP: Ion permeability induced in artificial membranes by the ATP/ADP antiporter. FEBS Letters 337: 231–234, 1994Google Scholar
  94. 93.
    Vacheron MJ, Clottes E, Chautard C, Vial C: Mitochondrial creatine kinase interaction with phospholipid vesicles. Arch Biochem Biophys 344: 316–324, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Olaf Stachowiak
    • 1
  • Uwe Schlattner
    • 1
  • Max Dolder
    • 1
  • Theo Wallimann
    • 1
  1. 1.Institute of Cell BiologySwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations