Journal of Radioanalytical and Nuclear Chemistry

, Volume 245, Issue 2, pp 261–272 | Cite as

Preconcentration and Analysis of Strontium-90 and Technetium-99 from Hanford Groundwater Using Solid Phase Extraction

  • S. K. Fiskum
  • R. G. Riley
  • C. J. Thompson
Article

Abstract

Solid-phase extraction disks produced by 3M and Eichrom were evaluated for routine use in supporting the Hanford Groundwater Monitoring Project. Both disk formats contain Sr- or Tc-selective extractants, bound in a filter support, that act to preconcentrate and isolate the isotope of interest. The 3M Empore™ Sr Rad Disks and Tc Rad Disks were tested with respect to precision, accuracy, radiochemical yields, interferences, and volume-load variation. The Empore™ and Eichrom solid-phase extraction disks were applied to the 90Sr and/or 99Tc determination in representative Hanford groundwater samples with varying chemical and isotopic compositions. Results were compared to standard analytical methods. Both the Empore™ and Eichrom Tc extraction disks produced consistently higher radiochemical yields, lower detection limits, and greater accuracy than the standard analysis method. The Empore™ Sr extraction disks produced comparable radiochemical yields, detection limit, and accuracy relative to the standard method; however, total uncertainties were lower.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. S. Department of Energy (DOE), The 1996 Baseline Environmental Management Report, DOE/EM-0290, Vol. 3, June 1996.Google Scholar
  2. 2.
    Hanford Site Groundwater Monitoring for Fiscal Year 1998, M. J. Hartman, (Ed.), PNNL-12086, Pacific Northwest National Laboratory, Richland, WA. February 1999.Google Scholar
  3. 3.
    L. L. Smith, K. A. Orlandini, J. S. Alvarado, K. M. Hoffmann, D. C. Seely, R. T. Shannon, J. Radiochim. Acta, 73 (1996) 165.Google Scholar
  4. 4.
    D. M. Beals, W. G. Britt, J. P. Bibler, D. A. Brooks, J. Radioanal. Nucl. Chem., 236 (1998) 187.Google Scholar
  5. 5.
    D. M. Beals, B. S. Crandall, P. D. Fledderman, J. Radioanal. Nucl. Chem., in press.Google Scholar
  6. 6.
    D. C. Seely, J. A. Osterheim, J. Radioanal. Nucl. Chem., 236 (1998) 175.Google Scholar
  7. 7.
    D. M. Beals, J. Radioanal. Nucl. Chem., 204 (1996) 253.Google Scholar
  8. 8.
    S. Uchida, K. Tagami, J. Radioanal. Nucl. Chem., 221 (1997) 35.Google Scholar
  9. 9.
    A. D. Banavali, J. M. Raimondi, E. M. Moreno, D. E. McCurdy, Radioact. Radiochem., 6, (1995) No. 3, 26.Google Scholar
  10. 10.
    T. M. Davis, D. M. Nelson, E. G. Thompson, Radioact. Radiochem., 4 (1993) No. 2, 14.Google Scholar
  11. 11.
    E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell, M. R. Nelson, Anal. Chim. Acta, (1995) 310.Google Scholar
  12. 12.
    S. Scarpitta, J. Odin-McCabe, R. Gaschott, A. Meier, E. Klug, Health Phys., in press.Google Scholar
  13. 13.
    L. A. Currie, Anal. Chem., 40 (1968) No. 3, 586.Google Scholar
  14. 14.
    3M Empore, Product Brochure, Technetium Rad Disks Technetium Interference Summary, 78–6900–7428–7, 1998.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2000

Authors and Affiliations

  • S. K. Fiskum
    • 1
  • R. G. Riley
    • 1
  • C. J. Thompson
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations