Annals of Global Analysis and Geometry

, Volume 18, Issue 3–4, pp 405–435 | Cite as

Calibrated Embeddings in the Special Lagrangian and Coassociative Cases

  • Robert L. Bryant
Article

Abstract

Every closed, oriented, real analytic Riemannian3–manifold can be isometrically embedded as a specialLagrangian submanifold of a Calabi–Yau 3–fold, even as thereal locus of an antiholomorphic, isometric involution. Every closed,oriented, real analytic Riemannian 4–manifold whose bundle of self-dual2–forms is trivial can be isometrically embedded as a coassociativesubmanifold in a G2-manifold, even as the fixed locus of ananti-G2 involution.

These results, when coupledwith McLean's analysis of the moduli spaces of such calibratedsubmanifolds, yield a plentiful supply of examples of compact calibratedsubmanifolds with nontrivial deformation spaces.

Calabi–Yau calibrations coassociative special Lagrangian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya, B. S.: N = 1 heterotic/M-theory duality and Joyce manifolds, Nuclear Phys. B 475 (1996), 579–596.Google Scholar
  2. 2.
    Acharya, B. S.: On mirror symmetry for manifolds of exceptional holonomy, Nuclear Phys. B 524(1998), 269–282.Google Scholar
  3. 3.
    Bryant, R., Chern, S.-S., Gardner, R., Goldschmidt, H. and Griffiths, P.: Exterior Differential Systems, Springer-Verlag, New York, 1991.Google Scholar
  4. 4.
    Besse, A.: Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer-Verlag, Berlin, 1987.Google Scholar
  5. 5.
    Bochner, S.: Analytic mapping of compact Riemannian spaces into Euclidean space, Duke Math. J. 3(1937), 339–354.Google Scholar
  6. 6.
    Bryant, R.: Minimal Lagrangian submanifolds of Kähler-Einstein manifolds, in Gu Chaohao, M. Berger and R.L. Bryant (eds), Differential Geometry and Differential Equations, Lecture Notes in Math. 1255, Springer-Verlag, Berlin, 1985, pp. 1–12.Google Scholar
  7. 7.
    Bryant, R.: Metrics with exceptional holonomy, Ann. of Math. 126(1987), 525–576.Google Scholar
  8. 8.
    Bryant, R.: Some examples of special Lagrangian tori, Adv. Theoret. Math. Phys. 1(1999), 83–90; also available at math.DG/9902076.Google Scholar
  9. 9.
    Bryant, R. and Salamon, S.: On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58(1989), 829–850.Google Scholar
  10. 10.
    Bryant, R. and Sharpe, E.: D-Branes and Spinc structures, Phys. Lett. B 450(1999), 353–357; also available at hep-th/981208.Google Scholar
  11. 11.
    Candelas P., Horowitz, G., Strominger, A. and Witten, E.: Vacuum configurations for superstrings, Nucl. Phys. B 258(1985), 46–74.Google Scholar
  12. 12.
    DeTurck, D. and Kazdan, J.: Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. 14(1981), 249–260.Google Scholar
  13. 13.
    Fernandez, M. and Gray, A.: Riemannian manifolds with structure group G2, Ann. Math. Pura Appl. 32(1982), 19–45.Google Scholar
  14. 14.
    Grauert, H.: On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math.(2) 68(1958), 460–472.Google Scholar
  15. 15.
    Harvey, F. R. and Lawson, H. B.: Calibrated geometries, Acta Math. 148(1982), 47–157.Google Scholar
  16. 16.
    Hitchin, N.: The moduli space of special Lagrangian submanifolds, Preprint, dg-ga/9711002.Google Scholar
  17. 17.
    Hitchin, N.: The moduli space of complex Lagrangian submanifolds, Preprint, dg-ga/9901069.Google Scholar
  18. 18.
    Joyce, D.: Compact Riemannian 7–manifolds with holonomy G2: I & II, J. Differential Geom. 43(1996), 291–328, 329–375Google Scholar
  19. 19.
    Kobayashi, M.: A special Lagrangian 3–torus as a real slice, in M.-H. Saito, Y. Shimizu and K. Ueno (eds), Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Scientific Publishing, River Edge, NJ, 1998, pp. 315–319.Google Scholar
  20. 20.
    Liu, C.-H.: On the global structure of some natural fibrations of Joyce manifolds, Preprint, hep-th/9809007.Google Scholar
  21. 21.
    McLean, R.: Deformations of calibrated submanifolds, Comm. Anal. Geom. 6(1998), 705–747.Google Scholar
  22. 22.
    Milnor, J. and Stasheff, J.: Characteristic Classes, Ann. of Math. Stud. 76, Princeton University Press, Princeton, 1974.Google Scholar
  23. 23.
    Papadopoulos, G. and Townsend, P. K.: Compactification of D D 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357(1995), 300–306; also available at hep-th/9506150.Google Scholar
  24. 24.
    S alamon, S.: Riemannian Geometry and Holonomy Groups, Pitman Res. Notes Math. 201, Longman, New York, 1989.Google Scholar
  25. 25.
    Shiga, K.: Some aspects of real-analytic manifolds and differentiable manifolds, J. Math. Soc.Japan 16(1964), 128–142. However, see the corrections in 17(1965), 216–217Google Scholar
  26. 26.
    Strominger, A., Yau, S. T. and Zaslow, E.: Mirror symmetry is T-duality, Nucl. Phys. B 479(1996), 243–259; MR 97j:32022.Google Scholar
  27. 27.
    Shatashvili, S. and Vafa, C.: Superstrings and manifolds of exceptional holonomy, Selecta Math. (N.S.) 1(1995), 347–381; MR 96k:81223; also available at arXiv:hep-th/9407025.Google Scholar
  28. 28.
    Yau, S. T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equations. I, Comm. Pure Appl. Math. 31(1978), 339–411; MR 81d:53045.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Robert L. Bryant
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamU.S.A.

Personalised recommendations