Advertisement

International Journal of Thermophysics

, Volume 22, Issue 1, pp 265–275 | Cite as

Theory of Thermal Conduction in Thin Ceramic Films

  • P. G. Klemens
Article

Abstract

The theory of heat conduction in ceramics by phonons, and at high temperatures also by infrared radiation, is reviewed. The phonon mean free path is limited by three-phonon interactions and by scattering of various imperfections. Point defects scatter high-frequency phonons; extended imperfections, such as inclusions, pores, and grain boundaries, affect mainly low-frequency phonons. Thermal radiation is also scattered by imperfections, but of a larger size, such as splat boundaries and large pores. Porosity also reduces the effective index of refraction. For films there are also external boundaries, cracks, and splat boundaries, depending on the method of deposition. Examples discussed are cubic zirconia, titanium oxide, and uranium oxide. Graphite and graphene sheets, with two-dimensional phonon gas, are discussed briefly.

graphene lattice defects oxides phonons pores thermal radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    K. Schlichting, N. Padture, and P. G. Klemens, in Thermal Conductivity 25, C. Uher and D. Morelli, eds. (Technomics, Lancaster, PA, 2000), p. 162.Google Scholar
  2. 2.
    P. G. Klemens, in Thermal Conductivity 25, C. Uher and D. Morelli, eds. (Technomics, Lancaster, PA, 2000), p. 291.Google Scholar
  3. 3.
    P. G. Klemens, High Temp. High Press. 17:41 (1985).Google Scholar
  4. 4.
    P. G. Klemens, Proc. Phys. Soc. (London) A 68:1113 (1955).Google Scholar
  5. 5.
    P. G. Klemens, Phys. Rev. 119:507 (1960).Google Scholar
  6. 6.
    P. G. Klemens, in Thermal Conductivity 23, K. E. Wilkes, R. B. Dinwiddie, and R. S. Graves, eds. (Technomics, Lancaster, PA, 1996), p. 209.Google Scholar
  7. 7.
    I. Pomeranchuk, J. Phys. USSR 6:237 (1942).Google Scholar
  8. 8.
    M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975), Section 1.6.Google Scholar
  9. 9.
    R. Brandt, G. Haufler, and G. Neuer, Inst. f. Kernenergetik, Univ. Stuttgart, Report SB3 (Stuttgart, Germany, 1973). English translation: Thermal Conductivity and Emittance of Solid UO 2 (Purdue Research Foundation, West Lafayette, IN, 1976).Google Scholar
  10. 10.
    P. G. Klemens and P. G. Lucuta, in Thermal Conductivity 23, K. E. Wilkes, R. B. Dinwiddie, and R. S. Graves, eds. (Technomics, Lancaster, PA, 1996), p. 590.Google Scholar
  11. 11.
    H. J. Siebeneck, W. P. Minnear, R. C. Bradt, and D. P. Hasselman, J. Am. Ceram. Soc. 59:84 (1978).Google Scholar
  12. 12.
    C. A. Ratsifaritana and P. G. Klemens, Int. J. Thermophys. 8:737 (1987).Google Scholar
  13. 13.
    P. G. Klemens, Physica B 263-264:102 (1999).Google Scholar
  14. 14.
    P. Morrell and R. Taylor, High Temp. High Press. 17:79 (1985).Google Scholar
  15. 15.
    P. G. Klemens and D. F. Pedraza, Carbon 32:735 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • P. G. Klemens
    • 1
  1. 1.Department of PhysicsUniversity of ConnecticutStorrsU.S.A

Personalised recommendations