Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

  • Jennifer G. BlankEmail author
  • Gregory H. Miller
  • Michael J. Ahrens
  • Randall E. Winans


A series of shock experiments were conducted to assess thefeasibility of the delivery of organic compounds to theEarth via cometary impacts. Aqueous solutions containingnear-saturation levels of amino acids (lysine, norvaline,aminobutyric acid, proline, and phenylalanine) were sealedinside stainless steel capsules and shocked by ballisticimpact with a steel projectile plate accelerated along a12-m-long gun barrel to velocities of 0.5–1.9 km sec-1. Pressure-temperature-time histories of the shocked fluidswere calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted0.85–2.7 μs and ranged from 5.1–21 GPa and 412–870 K. Recovered sample capsules were milled open and liquid wasextracted. Samples were analyzed using high performanceliquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acidssurvived. We observed differences in kinetic behavior andthe degree of survivability among the amino acids. Aminobutyricacid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influencethan temperature in determining reaction pathways. Our resultssupport the hypothesis that significant concentrations of organic material could survive a natural impact process.

amino acids comets impact delivery origin of life shock recovery experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, T. J., Blank, J. G., Hunt, J. E. and Winans, R. E.: 2001, Reversed-Phase High Performance Liquid Chromatography/Atmospheric-Pressure Chemical Ionization-Mass Spectrometry Method for Analyzing Free Amino Acids, submitted to J. Chromatography.Google Scholar
  2. Asano, T. and LeNoble, W. J.: 1978, Activation and Reaction Volumes in Solution, Chemical Reviews 78, 407–489.Google Scholar
  3. Bada, J. L. and Miller, S. L.: 1970, Kinetics and Mechanism of the Reversible Nonenzymic Deamination of Aspartic Acid, Journal of the American Chemical Society 92, 2774–2782.Google Scholar
  4. Bada, J. L., Miller, S. L. and Zhao, M.: 1995, The Stability of Amino Acids at Submarine Hydrothermal Vent Temperatures, Origins of Life and Evolution of the Biosphere 25, 111–118.Google Scholar
  5. Barak, I. and Bar-Nun, A.: 1975, The Mechanisms of Amino Acid Synthesis by High Temperature Shock-Waves, Origins of Life and Evolution of the Biosphere 6, 483–506.Google Scholar
  6. Basiuk, V. A.: 1992, Condensation of Vaporous Amino Acids in the Presence of Silica. Formation of Bi-and Tricyclic Amidines, Origins of Life and Evolution of the Biosphere 22, 333–348.Google Scholar
  7. Basiuk, V. A. and Douda, J.: 1999, Pyrolysis of Simple Amino Acids and Nucleobases: Survivability Limits and Implications for Extraterrestrial Delivery, Planetary and Space Science 47, 577–584.Google Scholar
  8. Blank, J. G., Cody, G. D., Hazen, R. M., Hemley, R. J., Mao, H.-K., Struzhkin, V. V. and Yoder Jr., H. S.: 1997, In-situ Monitoring of the Stability of Organic Compounds in Aqueous Solutions at High Pressure and Temperature, Eos 78, 327.Google Scholar
  9. Blank, J. G. and Miller, G. H.: 1998, 'The Fate of Organic Compounds in Cometary Impacts', in A. F.P. Houwing, A. Paull, R. R. Boyce, P. M. Danehy, M. Hannemann, J. J. Kurtz, T. J. McIntyre, S. J. McMahon, D. J. Mee, R. J. Sandeman and H. Tanno (eds.), Proceedings of the 21st International Symposium on Shock Waves, Panther Press, Fyshwick, Australia, pp. 1467–1472.Google Scholar
  10. Chyba, C. F. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355, 125–132.Google Scholar
  11. Chyba, C. F. and Sagan, C.: 1997, 'Comets as a Source of Prebiotic Organic Molecules for the Early Earth', in P. J. Thomas, C. F. Chyba and C. P. McKay (eds.), Comets and the Origin and Evolution of Life, Springer, New York, pp. 147–173.Google Scholar
  12. Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C.: 1990, Cometary Delivery of Organic Molecules to the Early Earth, Science 249, 366–373.Google Scholar
  13. Clark, B. C.: 1987, Comets, Volcanism, the Salt-Rich Regolith, and Cycling of Volatiles on Mars, Icarus 71, 250–256.Google Scholar
  14. Clark, B. C.: 1988, Primeval Procreative Comet Pond, Origins of Life and Evolution of the Biosphere 18, 209–238.Google Scholar
  15. Cronin, J. R. and Chang, S.: 1993, 'Organic Matter in Meteorites: Molecular and Isotopic Analyses of theMurchison Meteorite', in J. M. Greenberg, C. X. Mendoza-Gómez and V. Pirronello (eds.), The Chemistry of Life's Origins, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 209–258.Google Scholar
  16. Cronin, J. R. and Pizzarello, S.: 1986, Amino Acids of the Murchison Meteorite III: Seven Carbon Acyclic Primary A-Amino Alkanoic Acids, Geochimica et Cosmochimica Acta 50, 2419–2427.Google Scholar
  17. Davidson, D. F., DiRosa, M. D., Hanson, R. K. and Bowman, C. T.: 1993, A Study of Ethane Decomposition in a Shock Tube Using Laser Absorption of CH3, International Journal of Chemical Kinetics 25, 969–982.Google Scholar
  18. Davis, L. L. and Brower, K. R.: 1996, Reactions of Organic Compounds in Explosive-Driven Shock Waves, Journal of Physical Chemistry 100, 18775–18783.Google Scholar
  19. Decarli, P. S. and Meyers, M. A.: 1981, 'Design of Uniaxial Strain Shock Recovery Experiments', in M. A. Meyers (ed.), Shock Waves and High Strain Rate Phenomena in Metals, Plenum, New York, 341 p.Google Scholar
  20. Degens, E. T. and Bajor, M.: 1962, Amino acids and sugars in the Brudesheim and Murray Meteorites, Naturwissenschaft 49, 605–606.Google Scholar
  21. Dodson, B. W. and Graham, R. A.: 1982, 'Shock-Induced Organic Chemistry', in W. J. Nellis, L. Seaman and R. A. Graham (eds.), Shock Waves in Condensed Matter, American Institute of Physics/Springer-Verlag, New York, pp. 42–51.Google Scholar
  22. Dremin, A. N. and Babare, L. V.: 1982, 'The Shock Wave Chemistry of Organic Substances', in W. J. Nellis, L. Seaman and R. A. Graham (eds.), Shock Waves in Condensed Matter, American Institute of Physics/Springer-Verlag, New York, pp. 27–41.Google Scholar
  23. Fomenkova, M. N., Chang, S. and Mukhin, L. M.: 1994, Carbonaceous Components in the Comet Halley Dust, Geochimica et Cosmochimica Acta 58, 4503–4512.Google Scholar
  24. Gibbons, R. V. and Ahrens, T. J.: 1971, Shock Metamorphism of Silicate Glasses, Journal of Geophysical Research 76, 5489–5498.Google Scholar
  25. Gray III, G. T.: 1993, 'Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials', in J. R. Asay and M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids, Springer-Verlag, New York, pp. 187–215.Google Scholar
  26. Greenberg, J. M.: 1993, 'Physical and Chemical Composition of Comets-From Interstellar Space to Earth', in J. M. Greenberg, C. X. Mendoza-Gómez and V. Pirronello (eds.), The Chemistry of Life's Origins, Kluwer Academic Press, Dordrecht, The Netherlands, pp. 195–207.Google Scholar
  27. Greenstein, J. P. and Winitz, M.: 1961, The Chemistry of the Amino Acids, Vol. I-III, Wiley & Sons, N.Y., 2872 p.Google Scholar
  28. Gyore, J. and Ecet, M.: 1975, 'Thermal Behavior of Phenylalanine and Aminophenylalanine', in I. Buzas (ed.), Proceedings of the 4th International Conference on Thermal Analysis, Vol. 2, Heyden Press, London, England, pp. 387–394.Google Scholar
  29. Hidaka, Y., Taniguchi, T., Kamesawa, T., Masaoka, H., Inami, K. and Kawano, H.: 1993, High Temperature Pyrolysis of Formaldehyde in Shock Waves, International Journal of Chemical Kinetics 25, 305–322.Google Scholar
  30. Hills, J. G. and Goda, M. P.: 1993, The Fragmentation of Small Asteroids in the Atmosphere, Astronomical Journal 105, 1114–1144.Google Scholar
  31. Huebner, W. F. and Boice, D. C.: 1992, Comets as a Possible Source of Prebiotic Molecules, Origins of Life and Evolution of the Biosphere 21, 299–315.Google Scholar
  32. Irvine, W. M., Dickens, J. E., Lovell, A, J., Schloerb, F. P., Senay, M., Bergin, E. A., Jewitt, D. and Matthews, H. E.: 1998, Chemistry in Cometary Comae, Faraday Discussions 109, 475–492.Google Scholar
  33. Kieffer, S. W.: 1971, Shock Metamorphism of the Coconino Sandsotone at Meteor Crater, Arizona, Journal of Geophysical Research 76, 5449–5473.Google Scholar
  34. Kissel, J., Brownlee, D. E., Büchler, K., Clark, B. C., Fechtig, H., Grün, E., Hornung, K., Igenbergs, E. B., Jessberger, E. K., Krueger, F. R., Kuczera, H., McDonnell, J. A. M., Morfill, G. M., Rahe, J., Schwehm, G. H., Sekanina, Z., Utterback, N. G., Völk, H. J. and Zook, H. A.: 1986, Composition of Comet Halley Dust Particles from Giotto Observations, Nature 321, 336–337.Google Scholar
  35. Kissel, J. and Krueger, F. R.: 1987, The Organic Component in Dust from Comet Halley as Measured by the PUMA Mass Spectrometer on Board Vega 1, Nature 326, 755–760.Google Scholar
  36. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R. and Moore, C.: 1970, Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in theMurchison Meteorite, Nature 228, 923–926.Google Scholar
  37. Lerner, N. R., Peterson, E. and Chang, S.: 1993, The Strecker Synthesis as a Source of Amino Acids in Carbonaceous Chondrites: Deuterium Retention During Synthesis, Geochimica et Cosmochimica Acta 57, 4713–4723.Google Scholar
  38. Lowry, T. H. and Richardson, K. S.: 1987, Mechanism and Theory in Organic Chemistry, 3rd ed., Harper Collins Publishers, New York, 1090 p.Google Scholar
  39. Mackie, J. C., Colket III, M. B. and Nelson, P. F.: 1990, Shock Tube Pyrolysis of Pyridine, Journal of Physical Chemistry 94, 4099–4106.Google Scholar
  40. Marsh, S. P.: 1980, LASL Shock Hugoniot Data, University of California Press, Berkeley, 327 p.Google Scholar
  41. Matsumoto, K. and Acheson, R. M.: 1991, Organic Synthesis at High Pressures, JohnWiley & Sons, Inc., New York, 456 p.Google Scholar
  42. McKay, C. P. and Borucki, W. J.: 1997, Organic Synthesis in Experimental Impact Shocks, Science 276, 390–392.Google Scholar
  43. Mertens, J. D., Chang, A. Y., Hanson, R. K. and Bowman, C. T.: 1989, Reaction Kinetics of NH in the Shock Tube Pyrolysis of HNCO, International Journal of Chemical Kinetics 21, 1049–1067.Google Scholar
  44. Miller, G. H.: 1997, Conditions for Single and Multimaterial Jets, Proceedings of the 28th Lunar and Planetary Science Conference 28, 957–958.Google Scholar
  45. Miller, G. H.: 1998, Jetting in Oblique, Asymmetric Impacts, Icarus 134, 163–175.Google Scholar
  46. Miller, G. H. and Puckett, E. G.: 1996, A High-Order Godunov Method for Multiple Condensed Phases, Journal of Computational Physics 128, 134–164.Google Scholar
  47. Miller, S. L. and Urey, H. C.: 1959, Organic Compound Synthesis on the Primitive Earth, Science 130, 245–251.Google Scholar
  48. Orava, R. N. and Whittman, R. H.: 1971, 'Techniques for the Control and Application of Explosive Shock Waves', in Proceedings of the 5th International Conference on High Energy Fabrication, University of Denver Press, Denver, p. 1–27.Google Scholar
  49. Oró, J.: 1961, Comets and the Formation of Biochemical Compounds on the Primitive Earth, Nature 190, 389–390.Google Scholar
  50. Peterson, E., Horz, F. and Chang, S.: 1997, Modification of Amino Acids at Shock Pressures of 3 to 30 GPa, Geochimica et Cosmochimica Acta 61, 3937–3950.Google Scholar
  51. Pierazzo, E. and Chyba, C. F.: 1999, Amino Acid Survival in Large Cometary Impacts, Meteoritics and Planetary Science 34, 909–918.Google Scholar
  52. Ratcliff, M. A., Medley, E. E. and Simmonds, P. G.: 1974, Pyrolysis of Amino Acids: Mechanistic Considerations, Journal of Organic Chemistry 39, 1481–1490.Google Scholar
  53. Rodante, F., Fantauzzi, F. and Catalani, G.: 1997, Thermodynamics of Dipeptides inWater. V. Calorimetric Determination of Enthalpy Change Values Related to Proton Transfer Processes of a Series of Dipeptides in Water, Thermochimica Acta 296, 15–22.Google Scholar
  54. Rodante, F., Marrosu, G. and Catalani, G.: 1992, Thermal Analysis of Some α-Amino Acids with Similar Structures, Thermochimica Acta 194, 197–213.Google Scholar
  55. Russell, M. J., Hall, A. J., Cairns-Smith, A. G. and Braterman, P. S.: 1988, Submarine Hot Springs and the Origin of Life, Nature 336, 117–121.Google Scholar
  56. Sawamura, S., Tsuchiya, M., Taniguchi, Y. and Suzuki, K.: 1986, Effect of Pressure on the Dimerization of Benzoic Acid in n-Heptane, Spectrochimica Acta 42A, 669–772.Google Scholar
  57. Shock, E. L.: 1990, Geochemical Constraints on the Origin of Organic Compounds in Hydrothermal Systems, Origins of Life and Evolution of the Biosphere 20, 331–367.Google Scholar
  58. Shoemaker, E. M.: 1962, 'Interpretation of Lunar Craters', in Kopal, Z. (ed.) Physics and Astronomy of the Moon, Academic Press, New York, pp. 283–359.Google Scholar
  59. Simmonds, P. G., Medley, E. E., Ratcliff, M. A. and Shulman, G. P.: 1972, Thermal Decomposition of Aliphatic Monoamino-Monocarboxylic Acids, Analytical Chemistry 44, 2060–2066.Google Scholar
  60. Snyder, D. E.: 1997, The Search for Interstellar Glycine, Origins of Life and Evolution of the Biosphere 27, 115–133.Google Scholar
  61. Steel, D.: 1992, Cometary Supply of Terrestrial Organics: Lessons from the K/T and the Present Epoch, Origins of Life and Evolution of the Biosphere 21, 339–357.Google Scholar
  62. Stipanovic, R. D. and Howell, C. R.: 1982, The Structure of Gliovirin, a New Antibiotic from Gliocladium Virens, Journal of Antibiotics 35, 1326–1330.Google Scholar
  63. Streitwieser, A., Heathcock, C. H. and Kosower, E. M.: 1992, Introduction to Organic Chemistry, 4th ed., Prentice Hall, New Jersey, 1256 p.Google Scholar
  64. Suzuki, K. and Tsuchiya, M.: 1975, Effect of Hydrostatic Pressure on the Hydrogen Bond Formation Between Phenol and Dioxane in Hexane, Bulletin of the Chemical Society of Japan 48, 1701–1704.Google Scholar
  65. Thomas, P. J. and Brookshaw, L.: 1997, 'Numerical Models of Comet and Asteroid Impacts', in P. J. Thomas, C. F. Chyba and C. P. McKay (eds.), Comets and the Origin and Evolution of Life, Springer, New York, pp. 131–145.Google Scholar
  66. Tingle, T. N., Tyburczy, J. A., Ahrens, T. J. and Becker, C. H.: 1992, The Fate of Organic Matter During Planetary Accretion: Preliminary Studies of the Organic Chemistry of Experimentally Shocked Murchison Meteorite, Origins of Life and Evolution of the Biosphere 21, 385–397.Google Scholar
  67. Wu, C. H., Singh, H. J. and Kern, R. D.: 1987, Pyrolysis of Acetylene Behind Reflected Shock Waves, International Journal of Chemical Kinetics 19, 975–996.Google Scholar
  68. Zahnle, K. J. and Sleep, N. H.: 1997, 'Impacts and the Early Evolution of Life', in P. J. Thomas, C. F. Chyba and C. P. McKay (eds.), Comets and the Origin and Evolution of Life, Springer, New York, pp. 175–208.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jennifer G. Blank
    • 1
    Email author
  • Gregory H. Miller
    • 2
  • Michael J. Ahrens
    • 3
  • Randall E. Winans
    • 3
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Lawrence Berkeley National LaboratoryApplied Numerical Algorithms GroupBerkeleyU.S.A
  3. 3.Chemistry DivisionArgonne National LaboratoryArgonneU.S.A

Personalised recommendations