Advertisement

Multiplexed Readout of Superconducting Bolometers

  • D. J. Benford
  • C. A. Allen
  • J. A. Chervenak
  • M. M. Freund
  • A. S. Kutyrev
  • S. H. Moseley
  • R. A. Shafer
  • J. G. Staguhn
  • E. N. Grossman
  • G. C. Hilton
  • K. D. Irwin
  • J. M. Martinis
  • S. W. Nam
  • O. D. Reintsema
Article

Abstract

Studies of emission in the far-infrared and submillimeter from astrophysical sources require large arrays of detectors containing hundreds to thousands of elements. A multiplexed readout is necessary for practical implementation of such arrays, and can be developed using SQUIDS, such that, e.g., a 32 × 32 array of bolometers can be read out using ≈100 wires rather than the >2000 needed with a brute force expansion of existing arrays. These bolometer arrays are made by micromachining techniques, using superconducting transition edge sensors as the thermistors. We describe the development of this multiplexed superconducting bolometer array architecture as a step toward bringing about the first astronomically useful arrays of this design. This technology will be used in the SAFIRE instrument on SOFIA, and is a candidate for a wide variety of other spectroscopic and photometric instruments.

bolometers SQUIDS multiplexing transition edge sensors far infrared submillimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Wang, N.W. et al. 1996, Applied Optics, 35, p. 6639.Google Scholar
  2. [2]
    Holland, W.S. et al. 1996, Int J IR MM Waves, 17, p. 669.Google Scholar
  3. [3]
    Kreysa, E. et al. 1998, Proc. SPIE #3357, “Advanced Technology MMW, Radio, and Terahertz Telescopes”, T.G. Phillips, ed., p. 319.Google Scholar
  4. [4]
    Chervenak, J. A., Irwin, K. D., Grossman, E. N., Martinis, J. M., Reintsema, C.D. & Huber, M.E. 1999, Applied Physics Letters, 74, pp. 4043–4045.Google Scholar
  5. [5]
    Bock, J.J., Glenn, J., Grannan, S.M., Irwin, K.D., Lange, A.E., LeDuc, H.G. & Turner, A.D. 1998, Proc. SPIE #3357, T.G. Phillips, ed., p. 297.Google Scholar
  6. [6]
    Shafer, R.A. et al. 2000, in SPIE Proceedings, “Astronomical Telescopes and Instrumentation 2000”, Munich, Germany, in press.Google Scholar
  7. [7]
    Maffei, B. et al. 1994, Infrared Phys. Technol., 35,2, p. 321.Google Scholar
  8. [8]
    Swain, M.R., Bradford, C.M., Stacey, G.J., Bolatto, A.D., Jackson, J.M., Savage, M.L. & Davidson, J.A. 1998, Proc. SPIE #3354, A.M. Fowler, ed., p. 480.Google Scholar
  9. [9]
    Benford, D.J. et al. 2000, Proc. Eleventh Intl. Symposium on Space Terahertz Technology, in press.Google Scholar
  10. [10]
    Irwin, K.D., Hilton, G.C., Martinis, J.M., Deiker, S., Bergren, N., Nam, S.W., Rudman, D.A., & Wollman, D.A, 2000, Nucl. Instr. and Meth. A444, pp. 184–187.Google Scholar
  11. [11]
    Irwin, K.D. 1995, Appl. Phys. Lett. 66, p. 1998.Google Scholar
  12. [12]
    Welty, R.P. & Martinis, J.M. 1993, IEEE Transactions on Applied Superconductivity, 3, p. 2605.Google Scholar
  13. [13]
    Irwin, K.D., Hilton, G.C., Wollman, D.A., & Martinis, J.M., 1998, Journ. Appl. Phys. 83, p. 3978.Google Scholar
  14. [14]
    Hargrave, P.C. et al. 1999, Proc. Low Temperature Detectors #8, in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • D. J. Benford
    • 1
  • C. A. Allen
    • 1
  • J. A. Chervenak
    • 1
  • M. M. Freund
    • 1
  • A. S. Kutyrev
    • 1
  • S. H. Moseley
    • 1
  • R. A. Shafer
    • 1
  • J. G. Staguhn
    • 1
  • E. N. Grossman
    • 2
  • G. C. Hilton
    • 2
  • K. D. Irwin
    • 2
  • J. M. Martinis
    • 2
  • S. W. Nam
    • 2
  • O. D. Reintsema
    • 2
  1. 1.Goddard Space Flight CenterNASAGreenbeltUSA
  2. 2.BoulderUSA

Personalised recommendations