The Lipid World

  • Daniel Segré
  • Dafna Ben-Eli
  • David W. Deamer
  • Doron Lancet

Abstract

The continuity of abiotically formed bilayer membraneswith similar structures in contemporary cellular life,and the requirement for microenvironments in whichlarge and small molecules could be compartmentalized, support the idea that amphiphilic boundary structurescontributed to the emergence of life. As an extensionof this notion, we propose here a `Lipid World'scenario as an early evolutionary step in theemergence of cellular life on Earth. This conceptcombines the potential chemical activities of lipidsand other amphiphiles, with their capacity to undergospontaneous self-organization into supramolecularstructures such as micelles and bilayers. Inparticular, the documented chemical rate enhancementswithin lipid assemblies suggest that energy-dependentsynthetic reactions could lead to the growth andincreased abundance of certain amphiphilic assemblies.We further propose that selective processes might acton such assemblies, as suggested by our computersimulations of mutual catalysis among amphiphiles. Asdemonstrated also by other researchers, such mutualcatalysis within random molecular assemblies couldhave led to a primordial homeostatic system displayingrudimentary life-like properties. Taken together,these concepts provide a theoretical framework, andsuggest experimental tests for a Lipid World model forthe origin of life.

compositional information GARD lipozyme membrane mimetic chemistry micellar catalysis mutual catalysis origin of life prebiotic evolution self-reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E.: 1989, Pre-Biotic Organic Matter from Comets and Asteroids, Nature 342, 255–257.Google Scholar
  2. Bachmann, P. A., Luisi, P. L. and Lang, J.: 1992, Autocatalytic Self-Replicating Micelles as Models for Prebiotic Structures, Nature 357, 57–59.Google Scholar
  3. Bagley, R. J. and Farmer, J. D.: 1991, 'Spontaneous emergence of a metabolism', in Langton, C. G., Taylor, C., Farmer, J. D. and Rasmussen, S. (eds.), Artificial Life II, SFI Studies in the Sciences of Complexity, Addison-Wesley, X: 93–140.Google Scholar
  4. Ballester, P. and Rebek, J.: 1990, A Self-Replicating System, J. Am. Chem. Soc. 112, 1249–1250.Google Scholar
  5. Bangham, A. D., Standish, M. M. and Watkins, J. C.: 1965, Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids, J. Mol. Biol. 13, 238.Google Scholar
  6. Basile, B. P., Middleditch, B. S. and Oró, J.: 1978, Polycyclic Aromatic Hydrocarbons in the Murchison Meteorite, Org. Geochem. 5, 211–216.Google Scholar
  7. Beaudry, A. A. and Joyce, G. F.: 1992, Directed Evolution of an RNA Enzyme, Science 342, 255–257.Google Scholar
  8. Been, M. D. and Cech, T. R.: 1988, Science 239, 1412–1414.Google Scholar
  9. Ben-Eli, D.: submitted, 'From Random Chemistry to Compositional Stationary States in Prebiotic Non-Covalent Assemblies',, Rehovot, Weizmann Institute, M.Sc thesis.Google Scholar
  10. Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Gillette, J. S., Clemett, S. J. and Zare, R. N.: 1999, UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones, and Ethers, Science 283, 1135–1138.Google Scholar
  11. Blocher, M., Liu, D., Walde, P. and Luisi, P. L.: 1999, Liposome-Assisted Selective Polycondensation of A-Amino Acids and Peptides, ISSOL'99, San Diego, CA, USA, Abstract c1.7.Google Scholar
  12. Borman, S.: 1997, Combinatorial Chemistry, Chemical & Engineering News 24 (February): 43–62.Google Scholar
  13. Cairns-Smith, G.: 1982, Genetic Takeover and the Mineral Origins of Life, Cambridge, UK, Cambridge University Press.Google Scholar
  14. Cavalier-Smith, T.: 1995, Biodiversity and Evolution, M. Kato and Y. Doi. Tokyo, National Science Museum Foundation.Google Scholar
  15. Cech, T. R.: 1993, The Efficiency and Versatility of Catalytic RNA: Implications for an RNA world, Gene 135(1–2), 33–36.Google Scholar
  16. Chakrabarti, A., Breaker, R. R., Joyce, G. F. and Deamer, D. W.: 1994, Production of RNA by a Polymerase Protein Encapsulated within Phospholipid Vesicles, J. Mol. Evol. 39, 555–559.Google Scholar
  17. Chyba, C. F. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origin of Life, Nature 355, 125–132.Google Scholar
  18. Collins, J.: 1997, 'Phage display', in W. H. Moos, M. R. Pavia, A. D. Ellington and B. K. Kay (eds.), Annual reports in Combinatorial Chemistry and Molecular Diversity, Leiden, 1, 210–262.Google Scholar
  19. Cronin, J. R., Pizzarello, S. and Cruickshank, D. P.: 1988, 'Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets', in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Tucson AZ, University of Arizona Press, 819–857.Google Scholar
  20. Cuccovia, I. M., Quina, F. H. and Chaimovich, H.: 1982, A Remarkable Enhancement of the Rate of Ester Thiolysis by Synthetic Amphiphile Vesicles, Tetrahedron 38(7), 917–920.Google Scholar
  21. de Graaf, R. M., Visscher, J. and Schwarz, A. W.: 1995, A Plausibly Prebiotic Synthesis of Phosphonic Acids, Nature 378, 474–477.Google Scholar
  22. Deamer, D. W.: 1985, Boundary Structures are Formed by Organic Components of the Murchison Carbonaceous Chondrite, Nature 317, 792–794.Google Scholar
  23. Deamer, D. W.: 1992, Polycyclic Hydrocarbons: Primitive Pigment Systems in the Prebiotic Environment, Adv. Space Res. 12, 183–189.Google Scholar
  24. Deamer, D. W.: 1997, The First Living Systems: A Bioenergetic Perspective, Microbiol. Molecular Biology Reviews 61, 239–261.Google Scholar
  25. Deamer, D.W. and Boatman, D. E.: 1980, An Enzymatically Driven Membrane Reconstitution from Solubilized Components, J. Cell Biol. 84, 461–467.Google Scholar
  26. Deamer, D. W. and Pashley, R. M.: 1989, Amphiphilic Components of Carbonaceous Meteorites, Origins Life Evol. Biosphere 19, 21–33.Google Scholar
  27. Dugas, H. and Penney, C.: 1981, Bioorganic Chemistry: A Chemical Approach to Enzyme Action, New York, Springer-Verlag.Google Scholar
  28. Dyson, F.: 1985, Origins of Life, Cambridge, Cambridge University Press.Google Scholar
  29. Dyson, F. J.: 1982, A Model for the Origin of Life, J. Mol. Evol. 18, 344–350.Google Scholar
  30. Dyson, F. J.: 1999, Origins of Life, Cambridge, Cambridge University.Google Scholar
  31. Eigen, M. and Schuster, P.: 1982, Stages of Emerging Life-Five Principles of Early Organization, J. Mol. Evol. 19(1), 47–61.Google Scholar
  32. Esterbauer, H.: 1995, 'The Chemistry of Oxidation of Lipoproteins', in C. Rice-Evans and K. R. Bruckdorfer (eds.), Oxidative Stress, Lipoproteins and Cardiovascular Disfunctions, Portland Press Research Monograph, No. 6, Portland Press, pp. 55–79.Google Scholar
  33. Farmer, J. D., Kauffman, S. A. and Packard, N. H.: 1986, Autocatalytic Replication of Polymers, Physica 22D, 50–67.Google Scholar
  34. Fendler, H. J. and Fendler, E. J.: 1975, Catalysis in Micellar and Macromolecular Systems, New York, Academic Press.Google Scholar
  35. Fendler, J. H.: 1982, Membrane Mimetic Chemistry, New York, Wiley.Google Scholar
  36. Fox, S.W.: 1976, The Evolutionary Significance of Phase-Separated Microsystems, Origin Life Evol. Biosphere 7, 49–68.Google Scholar
  37. Fry, I.: 1995, Are the Different Hypotheses on the Emergence of Life as Different as they Seem?', Biology and Philosophy 10, 389–417.Google Scholar
  38. Gavino, V. C. and Deamer, D. W.: 1983, Purification of Acyl CoA:1-acyl-sn-glycero-3-phosphorylcholine Acyltransferase, J. Bioenerg. Biomembr. 14, 513–526.Google Scholar
  39. Gesteland, R. F., Cech, T. R. and Atkins, J. F. (eds.): 1999, The RNA world, Second Edition, Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press.Google Scholar
  40. Gilbert, W.: 1986, The RNA world, Nature 319, 618.Google Scholar
  41. Hargreaves, W. R. and Deamer, D. W.: 1978, Liposomes from Ionic, Single-Chain Amphiphiles, Biochemistry 17, 3759–3768.Google Scholar
  42. Hargreaves, W. R., Mulvihill, S. and Deamer, D. W.: 1977, Synthesis of Phospholipids and Membranes in Prebiotic Conditions, Nature 266, 78–80.Google Scholar
  43. Hassan, M., Bielawski, J P., Hempel, J. C. and Waldman, H.: 1996, Optimization and Visualization of Molecular Diversity of Combinatorial Libraries, Mol. Divers. 2(1–2), 64–74.Google Scholar
  44. Huber, C. and Wächtershäuser, G.: 1997, Activated Acetic Acid by Carbon Fixation on (Fe, Ni)S under Primordial Conditions, Science 276, 245.Google Scholar
  45. Jain, S. and Krishna, S.: 1998, Autocatalytic Sets and the Growth of Complexity in an Evolutionary Model, Phys. Rev. Lett. 81: 5684–5687.Google Scholar
  46. Joyce, G. F., Schwartz, A.W., Miller, S. L. and Orgel, L. E.: 1987, The Case for an Ancestral Genetic System Involving Simple Analogues of the Nucleotides, Proc. Natl. Acad. Sci. USA 84, 4398–4402.Google Scholar
  47. Kaler, W. K., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N.: 1989, Sontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants, Science 245, 1371–1374.Google Scholar
  48. Kauffman, S. A.: 1986, Autocatalytic Sets of Proteins, J. Theor. Biol. 119, 1–24.Google Scholar
  49. Kauffman, S. A.: 1993, The Origins of Order-Self-Organization and Selection in Evolution, Oxford, Oxford University Press.Google Scholar
  50. Klein, A. E. and Pilpel, N.: 1973, J. Chem. Soc., Faraday I 69, 1729–1736.Google Scholar
  51. Koch, A. L.: 1985, Primeval Cells: Possible Energy-Generating and Cell-Division Mechanisms, Journal of Molecular Evolution 21, 270–277.Google Scholar
  52. Küppers, B.: 1983, Molecular Theory of Evolution, Berlin-Heidelberg, Springer-Verlag.Google Scholar
  53. Kust, P. R. and Rathman, J. F.: 1995, Synthesis of Surfactants by Micellar Autocatalysis: N,N-dimethyldodecylamine N-oxide, Langmuir 11, 3007–3012.Google Scholar
  54. Lahav, N. and Nir, S.: 1997, Emergence of Template-and-Sequence-Directed (TSD) Syntheses: I. A Bio-Geochemical Model, Origins Life Evol. Biosphere 27, 377–395.Google Scholar
  55. Lancet, D., Horovitz, A. and Katchalski-Katzir, E.: 1994, 'Molecular Recognition in Biology: Models for Analysis of Protein/Ligand Interactions', in J.-P. Behr (ed.), Perspectives in Supramolecular Chemistry, J. Wiley New-York, pp. 25–71.Google Scholar
  56. Lancet, D., Kedem, O. and Pilpel, Y.: 1994, Emergence of Order in Small Autocatalytic Sets Maintained far from Equilibrium: Application of Receptor Affinity Distribution (RAD Model), Ber Bunsenges. Phys. Chem. 98(9), 1166–1169.Google Scholar
  57. Lancet, D., Sadovsky, E. and Seidemann, E.: 1993, Probability Model for Molecular Recognition in Biological Receptor Repertoires: Significance to the Olfactory System, Proc. Natl. Acad. USA. 90, 3715–3719.Google Scholar
  58. Lasaga, A. C., Holland, H. D. and Dwyer, M. J.: 1971, Primordial Oil Slick, Science 174, 53–55.Google Scholar
  59. Leach, W. W., Nooner, D. W. and Oró, J.: 1978, Abiotic Synthesis of Fatty Acids, Origin of Life xx, 113–122.Google Scholar
  60. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. and Ghadiri, M. R.: 1996, A Self-Replicating Peptide, Nature 382, 525–528.Google Scholar
  61. Lee, D. H., Severin, K., Yokobayashi, Y. and Ghadiri, M. R.: 1997, Emergence of Symbiosis in Peptide Self-Replication Through a Hypercyclic Network, Nature 390, 591–594.Google Scholar
  62. Lehn, J. M.: 1995, Supramolecular Chemistry. Weinheim, VCH.Google Scholar
  63. Li, T. and Nicolaou, K.C.: 1994, Chemical Self-Replication of Palindromic Duplex DNA, Nature 369, 218–221.Google Scholar
  64. Lifson, S.: 1996, On the Crucial Stages in the Origin of Animate Matter, J. Mol. Evol. 44, 1–8.Google Scholar
  65. Lifson, S. and Lifson, H.: 1999, A Model of Prebiotic Replication: Survival of the Fittest Versus Extinction of the Unfittest, J. Theor. Biol. 199, 425–433.Google Scholar
  66. Lipowsky, R.: 1995, The Morphology of Lipid Membranes, Curr. Opin. Struct. Biol. 5, 531–541.Google Scholar
  67. Luisi, P. L. and Varela, F. J.: 1989, Self-Replicating Micelles-A Chemical Version of a Minimal Autopoietic System, Origins Life Evol. Biosphere 19, 633–643.Google Scholar
  68. Luisi, P. L., Walde, P. and Oberholzer, T.: 1994, 'Enzymatic RNA Synthesis in Self-Reproducing Vesicles: An Approach to the Construction of a Minimal Synthetic Cell', Ber. Bunsenges. Phys. Chem. 98, 1160–1165.Google Scholar
  69. Luisi, P. L., Walde, P. and Oberholzer, T.: 1999, Lipid Vesicles as Possible Intermediates in the Origin of Life, Current Opinions in Colloid & Interface Science 4, 33–39.Google Scholar
  70. Mautner, M. N., Leonard, R. L. and Deamer, D. W.: 1995, Meteorite Organics in Planetary Environments: Hydrothermal Release, Surface Activity and Microbial Utilization, Planet. Space Sci. 43, 139–147.Google Scholar
  71. Mayer, B. and Rasmussen, S.: 1998, The LatticeMolecular Automaton (LMA): A Simulation System for Constructive Molecular Dynamics, Internat. J. of Modern Physics C 9, 157–177.Google Scholar
  72. McCollom, T. W., Ritter, G. and Simoneit, B. R. T.: 1999, Lipid Synthesis Under Hydrothermal Conditions by Fisher-Tropsch-Type Reactions, Orig. Life Evol. Biosphere 29, 153–166.Google Scholar
  73. McDonald, G. D., Whited, L. J., De Ruiter, C., Khare, B. N., Patnaik, A. and Sagan, C.: 1996, Production and Chemical Analysis of Cometary Ice Tholins, Icarus 122, 107–117.Google Scholar
  74. Miller, S. L.: 1953, A Production of Amino Acids under Possible Primitive Earth Conditions, Science 117, 528–529.Google Scholar
  75. Miller, S. L. and Urey, H. C.: 1959, Organic Compound Synthesis on the Primitive Earth, Science 130, 245–251.Google Scholar
  76. Morowitz, H. J.: 1967, 'Biological Self-Replicating Systems', in F. M. Snell (ed.), Progress in Theoretical Biology, Academic Press. 1, 35–58.Google Scholar
  77. Morowitz, H. J.: 1992, Beginnings of Cellular Life, London, Yale University Press.Google Scholar
  78. Morowitz, H. J.: 1999, A Theory of Biochemical Organization, Metabolic Pathways and Evolution, Complexity 4, 39–53.Google Scholar
  79. Moss, R. A., Nahas, R. C. and Ramaswami, S.: 1976, 'Bifunctional Micellar Catalysis', in K. L. Mittal (ed.), Micellization, Solubilization, and Microemulsions, New York, Plenum Press, 2, pp. 603–615.Google Scholar
  80. Norris, V. and Raine, D. J.: 1998, A Fission-Fusion Origin for Life, Origins Life Evol. Biosphere 28, 523–537.Google Scholar
  81. Oparin, A. I.: 1957, The Origin of Life on the Earth, London, Oliver and Boyd.Google Scholar
  82. Oparin, A. I., Orlovskii, A. F., Bukhlaeva, V. Y. and Gladilin, K. L.: 1976, Influence of the Enzymatic Synthesis of Polyadenylic Acid on a Coacervate System, Dokl. Akad. Nauk SSSR 226, 972–974.Google Scholar
  83. Orgel, L. E.: 1992, Molecular Replication, Nature 358, 203–209.Google Scholar
  84. Ourisson, G. and Nakatani, Y.: 1994, The Terpenoid Theory of the Origin of Cellular Life: The Evolution of Terpenoids to Choloesterol, Chemistry & Biology 1, 11–23.Google Scholar
  85. Rao, M., Eichenberg, J. and Oró, J.: 1982, Synthesis of Phosphatidylcholine under Possible Primitive Earth Conditions, J. Mol. Evol. 18, 196–202.Google Scholar
  86. Rebek, J.: 1994, 'Synthetic Self-Replicating Molecules', Scientific American 271, 34.Google Scholar
  87. Rosenwald, S.: 1998, Experimental Testing of the Receptor Affinity Distribution (RAD) model. Rehovot, Israel, Weizmann Institute, M.Sc. thesis.Google Scholar
  88. Sackmann, E. and Feder, T.: 1995, Budding, Fission and Domain Formation in Mixed Lipid Vesicles Induced by Lateral Phase-Separation and Macromolecular Condensation, Mol. Membr. Biol. 12, 21–28.Google Scholar
  89. Safran, S. A.: 1994, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Reading, MA, Addison-Wesley.Google Scholar
  90. Schlesinger, G. and Miller, S. L.: 1983, Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2. I.Amino Acids, J. Mol. Evol. 19, 376–382.Google Scholar
  91. Schwartz, A. W.: 1996, Did Minerals Perform Prebiotic Combinatorial Chemistry?, Chemistry and Biology 3, 515–518.Google Scholar
  92. Segré, D., Ben-Eli, D. and Lancet, D.: 2000a, Proc. Natl. Acad. Sci. 97, 4112.Google Scholar
  93. Segré, D., Ben-Eli, D. and Lancet, D.: 2000b, in G. Lemarchand and K. Meech (eds.), Bioastronomy '99-A New Era in Bioastronomy, ASP Conference Series 213, Kohala Coast, Hawaii, in press.Google Scholar
  94. Segré, D., Ben-Eli, D. and Lancet, D.: 1999, The Prebiotic Transition from Compositional to Sequence-Based Information, ISSOL '99, Abstract Book, San Diego, CA, USA.Google Scholar
  95. Segré, D. and Lancet, D.: 1998, 'Mutually Catalytic Amphiphiles: Simulated Chemical Evolution and Implications to Exobiology', in J. Chela-Flores and F. Raulin, Exobiology: Matter, Energy and Information in the Origin and Evolution of Life in the Universe, Trieste, Italy, Kluwer, pp. 123–131.Google Scholar
  96. Segré, D. and Lancet, D.: 1999, A Statistical Chemistry Approach to the Origin of Life, Chemtracts-Biochemistry and Molecular Biology 12, 382–397.Google Scholar
  97. Segré, D., Lancet, D., Kedem, O. and Pilpel, Y.: 1998a, Graded Autocatalysis Replication Domain (GARD): Kinetic Analysis of Self-Replication in Mutually Catalytic Sets, Origins Life Evol. Biosphere 28, 501–514.Google Scholar
  98. Segré, D., Pilpel, Y., Glusman, G. and Lancet, D.: 1997, 'Self-Replication and Evolution in Primordial Mutually Catalytic Sets', in C. B. Cosmovici, S. Bowyer and D. Werthimer (eds.), Astronomical and Biochemical Origins and the Search for Life in the Universe, Proceedings of the 5th International Conference on Bioastronomy, IAU Colloquium N.161, Bologna, Editrice Compositori, pp. 469–476.Google Scholar
  99. Segré, D., Pilpel, Y. and Lancet, D.: 1998b, Mutual Catalysis in Sets of Prebiotic Organic Molecules: Evolution Through Computer Simulated Chemical Kinetics, Physica A 249, 558–564.Google Scholar
  100. Shapiro, R.: 1984, The Improbability of Prebiotic Nucleic Acid Synthesis, Origins Life Evol. Biosphere 14, 565–570.Google Scholar
  101. Sievers, D. and Von-Kiedrowski, G.: 1994, Self-Replication of Complementary Nucleotide-Based Oligomers, Nature 369, 221–224.Google Scholar
  102. Smith, T. F. and Morowitz, H. J.: 1982, Between History and Physics, J. Mol. Evol. 18, 265–282.Google Scholar
  103. Stribling, R. and Miller, S. L.: 1987, Energy Yields for Hydrogen Cyanide and Formaldehyde: The HCN and Amino Acid Concentration in the Primitive Ocean, Orig. Life Evol. Biosphere 17, 261–273.Google Scholar
  104. Studier, M. H., Hayatsu, R. and Anders, E.: 1972, Origin of Organic Matter in Early Solar System-V. Further Studies of Meteoritic Hydrocarbons and a Discussion of Their Origin, Geochim. Cosmochim. Acta 36, 189–215.Google Scholar
  105. Szathmáry, E.: 1999, Chemes, Genes, Memes: A Revised Classification of Replicators, Lectures on Mathematics in the Life Sciences, 26, 1–10.Google Scholar
  106. Szathmáry, E. and Maynard Smith, J.: 1995, The Major Evolutionary Transitions, Nature 374, 227–232Google Scholar
  107. Tanford, C.: 1978, The Hydrophobic Effect and the Organization of Living Matter, Science 200, 1012–1018.Google Scholar
  108. Tazuke, S. and Ozawa, H.: 1975, Photofixation of Carbon Dioxide: Formation of 9,10-Dihydrophenanthrene 9-Carboxylic Acid from Phenanthrene-amine-carbon Dioxide Systems, J. Chem. Soc. Chem. Commun. 7, 237–238.Google Scholar
  109. Volkov, A. G., Gugashashdvili, M. I. and Deamer, D. W.: 1995, Energy Conversion at Liquid-Liquid Interfaces, Electrochimca acta 40, 2849–2868.Google Scholar
  110. Wächtershäuser, G.: 1988, Pyrite Formation, the First Energy Source for Life: A Hypothesis, Syst. Appl. Microbiol. 10, 207–210.Google Scholar
  111. Walde, P., Goto, A., Monnard, P. A., Wessicken, M. and Luisi, P. L.: 1994, Oparin's Reactions Revisited: Enzymatic Synthesis of Poly(adenylic acid) in Micelles and Self Reproducing Vesicles, J. Am. Chem. Soc. 116, 7541–7547.Google Scholar
  112. Walde, P., Wick, R., Fresta, M., Mangone, A. and Luisi, P. L.: 1994, Autopoietic Self-Reproduction of Fatty Acid Vesicles, J. Am. Chem. Soc. 116, 11649–11654.Google Scholar
  113. Wilson, C. and Szostak, J. W.: 1994, In vitro Evolution of a Self-Akylating Ribozyme, Nature 374, 777–782.Google Scholar
  114. Zachowsky, A., Henry, J. P. and Devaux, P. F.: 1989, Control of Transmembrane Lipid Asymmetry in Chromaffin Granules by an ATP-Dependent Protein, Nature 340, 75–76.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Daniel Segré
    • 1
  • Dafna Ben-Eli
    • 1
  • David W. Deamer
    • 2
  • Doron Lancet
    • 1
  1. 1.Dept. of Molecular Genetics and The Crown Human Genome CenterThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Dept. of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzU.S.A

Personalised recommendations